No Arabic abstract
Transfer learning across heterogeneous data distributions (a.k.a. domains) and distinct tasks is a more general and challenging problem than conventional transfer learning, where either domains or tasks are assumed to be the same. While neural network based feature transfer is widely used in transfer learning applications, finding the optimal transfer strategy still requires time-consuming experiments and domain knowledge. We propose a transferability metric called Optimal Transport based Conditional Entropy (OTCE), to analytically predict the transfer performance for supervised classification tasks in such cross-domain and cross-task feature transfer settings. Our OTCE score characterizes transferability as a combination of domain difference and task difference, and explicitly evaluates them from data in a unified framework. Specifically, we use optimal transport to estimate domain difference and the optimal coupling between source and target distributions, which is then used to derive the conditional entropy of the target task (task difference). Experiments on the largest cross-domain dataset DomainNet and Office31 demonstrate that OTCE shows an average of 21% gain in the correlation with the ground truth transfer accuracy compared to state-of-the-art methods. We also investigate two applications of the OTCE score including source model selection and multi-source feature fusion.
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they maintain their effectiveness even against other models. With great efforts delved into the transferability of adversarial examples, surprisingly, less attention has been paid to its impact on real-world deep learning deployment. In this paper, we investigate the transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, explicit content detection, optical character recognition (OCR), and object detection. It represents the cybercriminals situation where an ensemble of different detection mechanisms need to be evaded all at once. We propose practical attack that overcomes existing attacks limitation of requiring task-specific loss functions by targeting on the `dispersion of internal feature map. We report evaluation on four different computer vision tasks provided by Google Cloud Vision APIs to show how our approach outperforms existing attacks by degrading performance of multiple CV tasks by a large margin with only modest perturbations.
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they remain adversarial even against other models. Although great efforts have been delved into the transferability across models, surprisingly, less attention has been paid to the cross-task transferability, which represents the real-world cybercriminals situation, where an ensemble of different defense/detection mechanisms need to be evaded all at once. In this paper, we investigate the transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, object detection, semantic segmentation, explicit content detection, and text detection. Our proposed attack minimizes the ``dispersion of the internal feature map, which overcomes existing attacks limitation of requiring task-specific loss functions and/or probing a target model. We conduct evaluation on open source detection and segmentation models as well as four different computer vision tasks provided by Google Cloud Vision (GCV) APIs, to show how our approach outperforms existing attacks by degrading performance of multiple CV tasks by a large margin with only modest perturbations linf=16.
Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries and serves as an essential component of virtual assistants. Current TCSP models rely on numerous training data to achieve decent performance but fail to generalize to low-resource target languages or domains. In this paper, we present X2Parser, a transferable Cross-lingual and Cross-domain Parser for TCSP. Unlike previous models that learn to generate the hierarchical representations for nested intents and slots, we propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems. After that, we further propose a fertility-based slot predictor that first learns to dynamically detect the number of labels for each token, and then predicts the slot types. Experimental results illustrate that our model can significantly outperform existing strong baselines in cross-lingual and cross-domain settings, and our model can also achieve a good generalization ability on target languages of target domains. Furthermore, our model tackles the problem in an efficient non-autoregressive way that reduces the latency by up to 66% compared to the generative model.
Data quantity and quality are crucial factors for data-driven learning methods. In some target problem domains, there are not many data samples available, which could significantly hinder the learning process. While data from similar domains may be leveraged to help through domain adaptation, obtaining high-quality labeled data for those source domains themselves could be difficult or costly. To address such challenges on data insufficiency for classification problem in a target domain, we propose a weak adaptation learning (WAL) approach that leverages unlabeled data from a similar source domain, a low-cost weak annotator that produces labels based on task-specific heuristics, labeling rules, or other methods (albeit with inaccuracy), and a small amount of labeled data in the target domain. Our approach first conducts a theoretical analysis on the error bound of the trained classifier with respect to the data quantity and the performance of the weak annotator, and then introduces a multi-stage weak adaptation learning method to learn an accurate classifier by lowering the error bound. Our experiments demonstrate the effectiveness of our approach in learning an accurate classifier with limited labeled data in the target domain and unlabeled data in the source domain.
Imitation learning seeks to circumvent the difficulty in designing proper reward functions for training agents by utilizing expert behavior. With environments modeled as Markov Decision Processes (MDP), most of the existing imitation algorithms are contingent on the availability of expert demonstrations in the same MDP as the one in which a new imitation policy is to be learned. In this paper, we study the problem of how to imitate tasks when there exist discrepancies between the expert and agent MDP. These discrepancies across domains could include differing dynamics, viewpoint, or morphology; we present a novel framework to learn correspondences across such domains. Importantly, in contrast to prior works, we use unpaired and unaligned trajectories containing only states in the expert domain, to learn this correspondence. We utilize a cycle-consistency constraint on both the state space and a domain agnostic latent space to do this. In addition, we enforce consistency on the temporal position of states via a normalized position estimator function, to align the trajectories across the two domains. Once this correspondence is found, we can directly transfer the demonstrations on one domain to the other and use it for imitation. Experiments across a wide variety of challenging domains demonstrate the efficacy of our approach.