Do you want to publish a course? Click here

Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels

325   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The success of learning with noisy labels (LNL) methods relies heavily on the success of a warm-up stage where standard supervised training is performed using the full (noisy) training set. In this paper, we identify a warm-up obstacle: the inability of standard warm-up stages to train high quality feature extractors and avert memorization of noisy labels. We propose Contrast to Divide (C2D), a simple framework that solves this problem by pre-training the feature extractor in a self-supervised fashion. Using self-supervised pre-training boosts the performance of existing LNL approaches by drastically reducing the warm-up stages susceptibility to noise level, shortening its duration, and increasing extracted feature quality. C2D works out of the box with existing methods and demonstrates markedly improved performance, especially in the high noise regime, where we get a boost of more than 27% for CIFAR-100 with 90% noise over the previous state of the art. In real-life noise settings, C2D trained on mini-WebVision outperforms previous works both in WebVision and ImageNet validation sets by 3% top-1 accuracy. We perform an in-depth analysis of the framework, including investigating the performance of different pre-training approaches and estimating the effective upper bound of the LNL performance with semi-supervised learning. Code for reproducing our experiments is available at https://github.com/ContrastToDivide/C2D



rate research

Read More

Self-supervised learning holds promise in leveraging large amounts of unlabeled data, however much of its progress has thus far been limited to highly curated pre-training data such as ImageNet. We explore the effects of contrastive learning from larger, less-curated image datasets such as YFCC, and find there is indeed a large difference in the resulting representation quality. We hypothesize that this curation gap is due to a shift in the distribution of image classes -- which is more diverse and heavy-tailed -- resulting in less relevant negative samples to learn from. We test this hypothesis with a new approach, Divide and Contrast (DnC), which alternates between contrastive learning and clustering-based hard negative mining. When pretrained on less curated datasets, DnC greatly improves the performance of self-supervised learning on downstream tasks, while remaining competitive with the current state-of-the-art on curated datasets.
71 - Yi Wei , Xue Mei , Xin Liu 2021
Training a deep neural network heavily relies on a large amount of training data with accurate annotations. To alleviate this problem, various methods have been proposed to annotate the data automatically. However, automatically generating annotations will inevitably yields noisy labels. In this paper, we propose a Data Selection and joint Training (DST) method to automatically select training samples with accurate annotations. Specifically, DST fits a mixture model according to the original annotation as well as the predicted label for each training sample, and the mixture model is utilized to dynamically divide the training dataset into a correctly labeled dataset, a correctly predicted set and a wrong dataset. Then, DST is trained with these datasets in a supervised manner. Due to confirmation bias problem, we train the two networks alternately, and each network is tasked to establish the data division to teach another network. For each iteration, the correctly labeled and predicted labels are reweighted respectively by the probabilities from the mixture model, and a uniform distribution is used to generate the probabilities of the wrong samples. Experiments on CIFAR-10, CIFAR-100 and Clothing1M demonstrate that DST is the comparable or superior to the state-of-the-art methods.
Voice-over-Internet-Protocol (VoIP) calls are prone to various speech impairments due to environmental and network conditions resulting in bad user experience. A reliable audio impairment classifier helps to identify the cause for bad audio quality. The user feedback after the call can act as the ground truth labels for training a supervised classifier on a large audio dataset. However, the labels are noisy as most of the users lack the expertise to precisely articulate the impairment in the perceived speech. In this paper, we analyze the effects of massive noise in labels in training dense networks and Convolutional Neural Networks (CNN) using engineered features, spectrograms and raw audio samples as inputs. We demonstrate that CNN can generalize better on the training data with a large number of noisy labels and gives remarkably higher test performance. The classifiers were trained both on randomly generated label noise and the label noise introduced by human errors. We also show that training with noisy labels requires a significant increase in the training dataset size, which is in proportion to the amount of noise in the labels.
We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels. Recent strategies such as pseudo-labeling, sample selection with Gaussian Mixture models, weighted supervised contrastive learning have been combined into a fine-tuning phase following the pre-training. This paper provides an extensive empirical study showing that a preliminary contrastive learning step brings a significant gain in performance when using different loss functions: non-robust, robust, and early-learning regularized. Our experiments performed on standard benchmarks and real-world datasets demonstrate that: i) the contrastive pre-training increases the robustness of any loss function to noisy labels and ii) the additional fine-tuning phase can further improve accuracy but at the cost of additional complexity.
Multi-label image classification has generated significant interest in recent years and the performance of such systems often suffers from the not so infrequent occurrence of incorrect or missing labels in the training data. In this paper, we extend the state-of the-art of training classifiers to jointly deal with both forms of errorful data. We accomplish this by modeling noisy and missing labels in multi-label images with a new Noise Modeling Network (NMN) that follows our convolutional neural network (CNN), integrates with it, forming an end-to-end deep learning system, which can jointly learn the noise distribution and CNN parameters. The NMN learns the distribution of noise patterns directly from the noisy data without the need for any clean training data. The NMN can model label noise that depends only on the true label or is also dependent on the image features. We show that the integrated NMN/CNN learning system consistently improves the classification performance, for different levels of label noise, on the MSR-COCO dataset and MSR-VTT dataset. We also show that noise performance improvements are obtained when multiple instance learning methods are used.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا