No Arabic abstract
According to planetary interior models, some giant planets contain large metal masses with large metal-mass fractions. HD 149026b and TOI-849b are characteristic examples of these giant planets. It has been suggested that the envelope mass loss during giant impacts plays a key role in the formation of such giant planets. The aim of the present letter is to propose a mechanism that can explain the origin of such giant planets. We investigate the formation of giant planets in a rapidly dissipating disk using N-body simulations that consider pebble accretion. The results show that although the pebble isolation mass is smaller than the metal mass (> 30 Earth masses) in some giant planets, the interior metal mass can be increased by giant impacts between planets with the isolation mass. Regarding the metal fraction, the cores accrete massive envelopes by runaway gas accretion during the disk-dissipation phase of 1-10 Myr in a disk that evolves without photoevaporation. Although a large fraction of the envelope can be lost during giant impacts, the planets can reaccrete the envelope after impacts in a slowly dissipating disk. Here, we demonstrate that, by photoevaporation in a rapidly dissipating disk, the runaway gas accretion is quenched in the middle, resulting in the formation of giant planets with large metal-mass fractions. The origins of HD 149026b and TOI-849b, which are characterized by their large metal-mass fractions, can be naturally explained by a model that considers a disk evolving with photoevaporation.
The relationship between the compositions of giant planets and their host stars is of fundamental interest in understanding planet formation. The solar system giant planets are enhanced above solar composition in metals, both in their visible atmospheres and bulk compositions. A key question is whether the metal enrichment of giant exoplanets is correlated with that of their host stars. Thorngren et al. (2016) showed that in cool (Teq < 1000 K) giant exoplanets, the total heavy-element mass increases with total Mp and the heavy element enrichment relative to the parent star decreases with total Mp. In their work, the host star metallicity was derived from literature [Fe/H] measurements. Here we conduct a more detailed and uniform study to determine whether different host star metals (C, O, Mg, Si, Fe, and Ni) correlate with the bulk metallicity of their planets, using correlation tests and Bayesian linear fits. We present new host star abundances of 19 cool giant planet systems, and combine these with existing host star data for a total of 22 cool giant planet systems (24 planets). Surprisingly, we find no clear correlation between stellar metallicity and planetary residual metallicity (the relative amount of metal versus that expected from the planet mass alone), which is in conflict with common predictions from formation models. We also find a potential correlation between residual planet metals and stellar volatile-to-refractory element ratios. These results provide intriguing new relationships between giant planet and host star compositions for future modeling studies of planet formation.
We present an analysis of three years of precision radial velocity measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude radial-velocity variables worthy of follow-up with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semi-amplitude K > 100 m/s, or M_p*sin(i) > 3.0 M_JUP*(P/yr)^(1/3), for orbital periods P< 3 yr. None of the stars in our sample exhibits radial-velocity variations compatible with the presence of Jovian planets with periods shorter than the survey duration. The resulting average frequency of gas giants orbiting metal-poor dwarfs with -2.0 < [Fe/H] < -0.6 is f_p<0.67% (at the 1-sigma confidence level). We examine the implications of this null result in the context of the observed correlation between the rate of occurrence of giant planets and the metallicity of their main-sequence solar-type stellar hosts. By combining our dataset with the Fischer & Valenti (2005) uniform sample, we confirm that the likelihood of a star to harbor a planet more massive than Jupiter within 2 AU is a steeply rising function of the hosts metallicity. However, the data for stars with -1.0 < [Fe/H] < 0.0 are compatible, in a statistical sense, with a constant occurrence rate f_p~1%. Our results can usefully inform theoretical studies of the process of giant planet formation across two orders of magnitude in metallicity.
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semi-major axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H]<0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g. stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.
In the last few years, the so-called Nice model has got a significant importance in the study of the formation and evolution of the solar system. According to this model, the initial orbital configuration of the giant planets was much more compact than the one we observe today. We study the formation of the giant planets in connection with some parameters that describe the protoplanetary disk. The aim of this study is to establish the conditions that favor their simultaneous formation in line with the initial configuration proposed by the Nice model. We focus in the conditions that lead to the simultaneous formation of two massive cores, corresponding to Jupiter and Saturn, able to achieve the cross-over mass (where the mass of the envelope of the giant planet equals the mass of the core, and gaseous runway starts) while Uranus and Neptune have to be able to grow to their current masses. We compute the in situ planetary formation, employing the numerical code introduced in our previous work, for different density profiles of the protoplanetary disk. Planetesimal migration is taken into account and planetesimals are considered to follow a size distribution between $r_p^{min}$ (free parameter) and $r_p^{max}= 100$ km. The cores growth is computed according to the oligarchic growth regime. The simultaneous formation of the giant planets was successfully completed for several initial conditions of the disk. We find that for protoplanetary disks characterized by a power law ($Sigma propto r^{-p}$), smooth surface density profiles ($p leq 1.5$) favor the simultaneous formation. However, for steep slopes ($psim 2$, as previously proposed by other authors) the simultaneous formation of the solar system giant planets is unlikely ...
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.