No Arabic abstract
Lesion detection serves a critical role in early diagnosis and has been well explored in recent years due to methodological advancesand increased data availability. However, the high costs of annotations hinder the collection of large and completely labeled datasets, motivating semi-supervised detection approaches. In this paper, we introduce mean teacher hetero-modal detection (MTHD), which addresses two important gaps in current semi-supervised detection. First, it is not obvious how to enforce unlabeled consistency constraints across the very different outputs of various detectors, which has resulted in various compromises being used in the state of the art. Using an anchor-free framework, MTHD formulates a mean teacher approach without such compromises, enforcing consistency on the soft-output of object centers and size. Second, multi-sequence data is often critical, e.g., for abdominal lesion detection, but unlabeled data is often missing sequences. To deal with this, MTHD incorporates hetero-modal learning in its framework. Unlike prior art, MTHD is able to incorporate an expansive set of consistency constraints that include geometric transforms and random sequence combinations. We train and evaluate MTHD on liver lesion detection using the largest MR lesion dataset to date (1099 patients with >5000 volumes). MTHD surpasses the best fully-supervised and semi-supervised competitors by 10.1% and 3.5%, respectively, in average sensitivity.
In this paper, we delve into semi-supervised object detection where unlabeled images are leveraged to break through the upper bound of fully-supervised object detection models. Previous semi-supervised methods based on pseudo labels are severely degenerated by noise and prone to overfit to noisy labels, thus are deficient in learning different unlabeled knowledge well. To address this issue, we propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection. We comprehensively consider divergent types of unlabeled images according to their difficulty levels, utilize them in different phases and ensemble models from different phases together to generate ultimate results. Image uncertainty guided easy data selection and region uncertainty guided RoI Re-weighting are involved in multi-phase learning and enable the detector to concentrate on more certain knowledge. Through extensive experiments on PASCAL VOC and MS COCO, we demonstrate that our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin, more than 3% on VOC and 2% on COCO.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on popular benchmarks including CIFAR-10, CUB-200, and MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and FixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods such as the $Pi$-model, temporal ensembling, the mean teacher, or the virtual adversarial training, have advanced the state of the art in several SSL tasks. These methods can typically reach performances that are comparable to their fully supervised counterparts while using only a fraction of labelled examples. Despite these methodological advances, the understanding of these methods is still relatively limited. In this text, we analyse (variations of) the $Pi$-model in settings where analytically tractable results can be obtained. We establish links with Manifold Tangent Classifiers and demonstrate that the quality of the perturbations is key to obtaining reasonable SSL performances. Importantly, we propose a simple extension of the Hidden Manifold Model that naturally incorporates data-augmentation schemes and offers a framework for understanding and experimenting with SSL methods.
The automatic diagnosis of various retinal diseases from fundus images is important to support clinical decision-making. However, developing such automatic solutions is challenging due to the requirement of a large amount of human-annotated data. Recently, unsupervised/self-supervised feature learning techniques receive a lot of attention, as they do not need massive annotations. Most of the current self-supervised methods are analyzed with single imaging modality and there is no method currently utilize multi-modal images for better results. Considering that the diagnostics of various vitreoretinal diseases can greatly benefit from another imaging modality, e.g., FFA, this paper presents a novel self-supervised feature learning method by effectively exploiting multi-modal data for retinal disease diagnosis. To achieve this, we first synthesize the corresponding FFA modality and then formulate a patient feature-based softmax embedding objective. Our objective learns both modality-invariant features and patient-similarity features. Through this mechanism, the neural network captures the semantically shared information across different modalities and the apparent visual similarity between patients. We evaluate our method on two public benchmark datasets for retinal disease diagnosis. The experimental results demonstrate that our method clearly outperforms other self-supervised feature learning methods and is comparable to the supervised baseline.
Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a models performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch. Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. OpenMatch achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.