Do you want to publish a course? Click here

On Counting Propositional Logic

370   0   0.0 ( 0 )
 Added by Melissa Antonelli
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagners counting hierarchy, but also that the resulting logic admits a satisfactory proof-theoretical treatment. From the latter, a type system for a probabilistic lambda-calculus is derived in the spirit of the Curry-Howard correspondence, showing the potential of counting propositional logic as a useful tool in several fields of theoretical computer science.



rate research

Read More

This volume contains a selection of papers presented at Linearity/TLLA 2018: Joint Linearity and TLLA workshops (part of FLOC 2018) held on July 7-8, 2018 in Oxford. Linearity has been a key feature in several lines of research in both theoretical and practical approaches to computer science. On the theoretical side there is much work stemming from linear logic dealing with proof technology, complexity classes and more recently quantum computation. On the practical side there is work on program analysis, expressive operational semantics for programming languages, linear programming languages, program transformation, update analysis and efficient implementation techniques. Linear logic is not only a theoretical tool to analyse the use of resources in logic and computation. It is also a corpus of tools, approaches, and methodologies (proof nets, exponential decomposition, geometry of interaction, coherent spaces, relational models, etc.) that were originally developed for the study of linear logics syntax and semantics and are nowadays applied in several other fields.
Query evaluation in tuple-independent probabilistic databases is the problem of computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. There are two main approaches to this problem: (1) in `grounded inference one first obtains the lineage for the query and database instance as a Boolean formula, then performs weighted model counting on the lineage (i.e., computes the probability of the lineage given probabilities of its independent Boolean variables); (2) in methods known as `lifted inference or `extensional query evaluation, one exploits the high-level structure of the query as a first-order formula. Although it is widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this paper we show such a formal separation for the first time. We exhibit a class of queries for which model counting can be done in polynomial time using extensional query evaluation, whereas the algorithms used in state-of-the-art exact model counters on their lineages provably require exponential time. Our lower bounds on the running times of these exact model counters follow from new exponential size lower bounds on the kinds of d-DNNF representations of the lineages that these model counters (either explicitly or implicitly) produce. Though some of these queries have been studied before, no non-trivial lower bounds on the sizes of these representations for these queries were previously known.
The logic of equality with uninterpreted functions (EUF) provides a means of abstracting the manipulation of data by a processor when verifying the correctness of its control logic. By reducing formulas in this logic to propositional formulas, we can apply Boolean methods such as Ordered Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification. We can exploit characteristics of the formulas describing the verification conditions to greatly simplify the propositional formulas generated. In particular, we exploit the property that many equations appear only in positive form. We can therefore reduce the set of interpretations of the function symbols that must be considered to prove that a formula is universally valid to those that are ``maximally diverse. We present experimental results demonstrating the efficiency of this approach when verifying pipelined processors using the method proposed by Burch and Dill.
189 - Bart Bogaerts 2019
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are sought in all areas of logic programming, including but not restricted to: Foundations: Semantics, Formalisms, Nonmonotonic reasoning, Knowledge representation. Languages: Concurrency, Objects, Coordination, Mobility, Higher Order, Types, Modes, Assertions, Modules, Meta-programming, Logic-based domain-specific languages, Programming Techniques. Declarative programming: Declarative program development, Analysis, Type and mode inference, Partial evaluation, Abstract interpretation, Transformation, Validation, Verification, Debugging, Profiling, Testing, Execution visualization Implementation: Virtual machines, Compilation, Memory management, Parallel/distributed execution, Constraint handling rules, Tabling, Foreign interfaces, User interfaces. Related Paradigms and Synergies: Inductive and Co-inductive Logic Programming, Constraint Logic Programming, Answer Set Programming, Interaction with SAT, SMT and CSP solvers, Logic programming techniques for type inference and theorem proving, Argumentation, Probabilistic Logic Programming, Relations to object-oriented and Functional programming. Applications: Databases, Big Data, Data integration and federation, Software engineering, Natural language processing, Web and Semantic Web, Agents, Artificial intelligence, Computational life sciences, Education, Cybersecurity, and Robotics.
154 - Francesco Ricca 2020
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are solicited in all areas of logic programming and related areas, including but not restricted to: - Foundations: Semantics, Formalisms, Answer-Set Programming, Non-monotonic Reasoning, Knowledge Representation. - Declarative Programming: Inference engines, Analysis, Type and mode inference, Partial evaluation, Abstract interpretation, Transformation, Validation, Verification, Debugging, Profiling, Testing, Logic-based domain-specific languages, constraint handling rules. - Related Paradigms and Synergies: Inductive and Co-inductive Logic Programming, Constraint Logic Programming, Interaction with SAT, SMT and CSP solvers, Logic programming techniques for type inference and theorem proving, Argumentation, Probabilistic Logic Programming, Relations to object-oriented and Functional programming, Description logics, Neural-Symbolic Machine Learning, Hybrid Deep Learning and Symbolic Reasoning. - Implementation: Concurrency and distribution, Objects, Coordination, Mobility, Virtual machines, Compilation, Higher Order, Type systems, Modules, Constraint handling rules, Meta-programming, Foreign interfaces, User interfaces. - Applications: Databases, Big Data, Data Integration and Federation, Software Engineering, Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics, Education, Computational life sciences, Education, Cybersecurity, and Robotics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا