Do you want to publish a course? Click here

Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and Applications

231   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This volume contains a selection of papers presented at Linearity/TLLA 2018: Joint Linearity and TLLA workshops (part of FLOC 2018) held on July 7-8, 2018 in Oxford. Linearity has been a key feature in several lines of research in both theoretical and practical approaches to computer science. On the theoretical side there is much work stemming from linear logic dealing with proof technology, complexity classes and more recently quantum computation. On the practical side there is work on program analysis, expressive operational semantics for programming languages, linear programming languages, program transformation, update analysis and efficient implementation techniques. Linear logic is not only a theoretical tool to analyse the use of resources in logic and computation. It is also a corpus of tools, approaches, and methodologies (proof nets, exponential decomposition, geometry of interaction, coherent spaces, relational models, etc.) that were originally developed for the study of linear logics syntax and semantics and are nowadays applied in several other fields.

rate research

Read More

325 - James Caldwell 2014
The goal of TFPIE is to gather researchers, professors, teachers, and all professionals interested in functional programming in education. This includes the teaching of functional programming, but also the application of functional programming as a tool for teaching other topics. The post-workshop review process received 13 submissions, which were vetted by the program committee, assuming scientific journal standards of publication. The six articles in this volume were selected for publication as the result of this process.
189 - Bart Bogaerts 2019
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are sought in all areas of logic programming, including but not restricted to: Foundations: Semantics, Formalisms, Nonmonotonic reasoning, Knowledge representation. Languages: Concurrency, Objects, Coordination, Mobility, Higher Order, Types, Modes, Assertions, Modules, Meta-programming, Logic-based domain-specific languages, Programming Techniques. Declarative programming: Declarative program development, Analysis, Type and mode inference, Partial evaluation, Abstract interpretation, Transformation, Validation, Verification, Debugging, Profiling, Testing, Execution visualization Implementation: Virtual machines, Compilation, Memory management, Parallel/distributed execution, Constraint handling rules, Tabling, Foreign interfaces, User interfaces. Related Paradigms and Synergies: Inductive and Co-inductive Logic Programming, Constraint Logic Programming, Answer Set Programming, Interaction with SAT, SMT and CSP solvers, Logic programming techniques for type inference and theorem proving, Argumentation, Probabilistic Logic Programming, Relations to object-oriented and Functional programming. Applications: Databases, Big Data, Data integration and federation, Software engineering, Natural language processing, Web and Semantic Web, Agents, Artificial intelligence, Computational life sciences, Education, Cybersecurity, and Robotics.
154 - Francesco Ricca 2020
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are solicited in all areas of logic programming and related areas, including but not restricted to: - Foundations: Semantics, Formalisms, Answer-Set Programming, Non-monotonic Reasoning, Knowledge Representation. - Declarative Programming: Inference engines, Analysis, Type and mode inference, Partial evaluation, Abstract interpretation, Transformation, Validation, Verification, Debugging, Profiling, Testing, Logic-based domain-specific languages, constraint handling rules. - Related Paradigms and Synergies: Inductive and Co-inductive Logic Programming, Constraint Logic Programming, Interaction with SAT, SMT and CSP solvers, Logic programming techniques for type inference and theorem proving, Argumentation, Probabilistic Logic Programming, Relations to object-oriented and Functional programming, Description logics, Neural-Symbolic Machine Learning, Hybrid Deep Learning and Symbolic Reasoning. - Implementation: Concurrency and distribution, Objects, Coordination, Mobility, Virtual machines, Compilation, Higher Order, Type systems, Modules, Constraint handling rules, Meta-programming, Foreign interfaces, User interfaces. - Applications: Databases, Big Data, Data Integration and Federation, Software Engineering, Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics, Education, Computational life sciences, Education, Cybersecurity, and Robotics.
This volume contains the joint proceedings of MARS 2018, the third workshop on Models for Formal Analysis of Real Systems, and VPT 2018, the sixth international workshop on Verification and Program Transformation, held together on April 20, 2018 in Thessaloniki, Greece, as part of ETAPS 2018, the European Joint Conferences on Theory and Practice of Software. MARS emphasises modelling over verification. It aims at discussing the lessons learned from making formal methods for the verification and analysis of realistic systems. Examples are: (1) Which formalism is chosen, and why? (2) Which abstractions have to be made and why? (3) How are important characteristics of the system modelled? (4) Were there any complications while modelling the system? (5) Which measures were taken to guarantee the accuracy of the model? We invited papers that present full models of real systems, which may lay the basis for future comparison and analysis. An aim of the workshop is to present different modelling approaches and discuss pros and cons for each of them. Alternative formal descriptions of the systems presented at this workshop are encouraged, which should foster the development of improved specification formalisms. VPT aims to provide a forum where people from the areas of program transformation and program verification can fruitfully exchange ideas and gain a deeper understanding of the interactions between those two fields. These interactions have been beneficial in both directions. On the one hand, methods and tools developed in the field of program transformation, such as partial deduction, partial evaluation, fold/unfold transformations, and supercompilation, are applied with success to verification, in particular to the verification of infinite state and parameterized systems. On the other hand, methods developed in program verification, such as model checking, abstract interpretation, SAT and SMT solving, and automated theorem proving, are used to enhance program transformation techniques, thereby making these techniques more powerful and useful in practice.
This volume contains a selection of papers presented at the 16th International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2020). The workshops are the premier technical forum for presenting research and experiences related to ACL2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا