Do you want to publish a course? Click here

Probing spin dynamics on diamond surfaces using a single quantum sensor

544   0   0.0 ( 0 )
 Added by Bo Dwyer
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the dynamics of a quantum bits environment is essential for the realization of practical systems for quantum information processing and metrology. We use single nitrogen-vacancy (NV) centers in diamond to study the dynamics of a disordered spin ensemble at the diamond surface. Specifically, we tune the density of dark surface spins to interrogate their contribution to the decoherence of shallow NV center spin qubits. When the average surface spin spacing exceeds the NV center depth, we find that the surface spin contribution to the NV center free induction decay can be described by a stretched exponential with variable power n. We show that these observations are consistent with a model in which the spatial positions of the surface spins are fixed for each measurement, but some of them reconfigure between measurements. In particular, we observe a depth-dependent critical time associated with a dynamical transition from Gaussian (n=2) decay to n=2/3, and show that this transition arises from the competition between the small decay contributions of many distant spins and strong coupling to a few proximal spins at the surface. These observations demonstrate the potential of a local sensor for understanding complex systems and elucidate pathways for improving and controlling spin qubits at the surface.

rate research

Read More

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins. While conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors has created the prospect of magnetic imaging of individual molecules. As an initial step towards this goal, isolated nuclear spins and spin pairs have been mapped. However, large clusters of interacting spins - such as found in molecules - result in highly complex spectra. Imaging these complex systems is an outstanding challenge due to the required high spectral resolution and efficient spatial reconstruction with sub-angstrom precision. Here we develop such atomic-scale imaging using a single nitrogen-vacancy (NV) centre as a quantum sensor, and demonstrate it on a model system of $27$ coupled $^{13}$C nuclear spins in a diamond. We present a new multidimensional spectroscopy method that isolates individual nuclear-nuclear spin interactions with high spectral resolution ($< 80,$mHz) and high accuracy ($2$ mHz). We show that these interactions encode the composition and inter-connectivity of the cluster, and develop methods to extract the 3D structure of the cluster with sub-angstrom resolution. Our results demonstrate a key capability towards magnetic imaging of individual molecules and other complex spin systems.
The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging.
We propose a protocol to estimate magnetic fields using a single nitrogen-vacancy (N-V) center in diamond, where the estimate precision scales inversely with time, ~1/T$, rather than the square-root of time. The method is based on converting the task of magnetometry into phase estimation, performing quantum phase estimation on a single N-V nuclear spin using either adaptive or nonadaptive feedback control, and the recently demonstrated capability to perform single-shot readout within the N-V [P. Neumann et. al., Science 329, 542 (2010)]. We present numerical simulations to show that our method provides an estimate whose precision scales close to ~1/T (T is the total estimation time), and moreover will give an unambiguous estimate of the static magnetic field experienced by the N-V. By combining this protocol with recent proposals for scanning magnetometry using an N-V, our protocol will provide a significant decrease in signal acquisition time while providing an unambiguous spatial map of the magnetic field.
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities beyond the current state-of-the-art. Here we present a method to controllably encode the interactions in the population of the spin states, thereby introducing a way to control the sensitivity of a single spin as a continuum in contrast to free-evolution based methods. By adopting this feature we demonstrate high-accuracy NV magnetometry without 2pi ambiguities, enhance the dynamic range by a factor of 4*10^3 achieve interaction times exceeding 2 ms in off-the-shelf diamond. We perform nuclear spin-noise spectroscopy in the frequency domain by dynamically controlling the NV spins sensitivity piecewise and in a smooth manner thereby precluding harmonic artefacts and undesired interactions. On a broader perspective dynamical sensitivity control provides an elegant handle on the inherent dynamics of quantum systems, while offering decisive advantages for NV centre applications notably in quantum controls and single molecule NMR/MRI.
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا