Do you want to publish a course? Click here

A model-independent test of the evolution of gas depletion factor for SPT-SZ and Planck ESZ clusters

199   0   0.0 ( 0 )
 Added by Shantanu Desai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gas mass fraction in galaxy clusters has been widely used to determine cosmological parameters. This method assumes that the ratio of the cluster gas mass fraction to the cosmic baryon fraction ($gamma(z)$) is constant as a function of redshift. In this work, we look for a time evolution of $gamma(z)$ at $R_{500}$ by using both the SPT-SZ and Planck Early SZ (ESZ) cluster data, in a model-independent fashion without any explicit dependence on the underlying cosmology. For this calculation, we use a non-parametric functional form for the Hubble parameter obtained from Gaussian Process regression using cosmic chronometers. We parameterize $gamma(z)$ as: $gamma(z)= gamma_0(1+gamma_1 z)$ to constrain the redshift evolution. We find contradictory results between both the samples. For SPT-SZ, $gamma (z)$ decreases as a function of redshift (at more than 5$sigma$), whereas a positive trend with redshift is found for Planck ESZ data (at more than 4$sigma$). We however find that the $gamma_1$ values for a subset of SPT-SZ and Planck ESZ clusters between the same redshift interval agree to within $1sigma$. When we allow for a dependence on the halo mass in the evolution of the gas depletion factor, the $4-5sigma$ discrepancy reduces to $2sigma$.



rate research

Read More

In this letter, we discuss a new method to probe the redshift evolution of the gas depletion factor, i.e. the ratio by which the gas mass fraction of galaxy clusters is depleted with respect to the universal mean of baryon fraction. The dataset we use for this purpose consists of 40 gas mass fraction measurements measured at $r_{2500}$ using Chandra X-ray observations, strong gravitational lensing sub-samples obtained from SLOAN Lens ACS + BOSS Emission-line Lens Survey (BELLS) + Strong Legacy Survey SL2S + SLACS. For our analysis, the validity of cosmic distance duality relation is assumed. We find a mildly decreasing trend for the gas depletion factor as a function of redshift at about 2.7$sigma$. This is the first result in literature which does not find a constant gas depletion factor as a function of redshift using gas mass fraction measurements at $r_{2500}$.
We present the weak lensing analysis of the Wide-Field Imager SZ Cluster of galaxy (WISCy) sample, a set of 12 clusters of galaxies selected for their Sunyaev-Zeldovich (SZ) effect. After developing new and improved methods for background selection and determination of geometric lensing scaling factors from absolute multi-band photometry in cluster fields, we compare the weak lensing mass estimate with public X-ray and SZ data. We find consistency with hydrostatic X-ray masses with no significant bias, no mass dependent bias and less than 20% intrinsic scatter and constrain fgas,500c=0.128+0.029-0.023. We independently calibrate the South Pole Telescope significance-mass relation and find consistency with previous results. The comparison of weak lensing mass and Planck Compton parameters, whether extracted self-consistently with a mass-observable relation (MOR) or using X-ray prior information on cluster size, shows significant discrepancies. The deviations from the MOR strongly correlate with cluster mass and redshift. This could be explained either by a significantly shallower than expected slope of Compton decrement versus mass and a corresponding problem in the previous X-ray based mass calibration, or a size or redshift dependent bias in SZ signal extraction.
We present the first cluster catalog extracted from combined space-based (Planck) and ground-based (South Pole Telescope; SPT-SZ) millimeter data. We developed and applied a matched multi-filter (MMF) capable of dealing with the different transfer functions and resolutions of the two datasets. We verified that it produces results consistent with publications from Planck and SPT collaborations when applied on the datasets individually. We also verified that Planck and SPT-SZ cluster fluxes are consistent with each other. When applied blindly to the combined dataset, the MMF generated a catalog of 419 detections ($S/N>5$), of which 323 are already part of the SPT-SZ or PSZ2 catalogs; 54 are new SZ detections, which have been identified in other catalogs or surveys; and 42 are new unidentified candidates. The MMF takes advantage of the complementarity of the two datasets, Planck being particularly useful for detecting clusters at a low redshift ($z<0.3$), while SPT is efficient at finding higher redshift ($z>0.3$) sources. This work represents a proof of concept that blind cluster extraction can be performed on combined, inhomogeneous millimeter datasets acquired from space and ground. This result is of prime importance for planned ground-based cosmic microwave background (CMB) experiments (e.g., Simons Observatory, CMB-S4) and envisaged CMB space missions (e.g., PICO, Backlight) that will detect hundreds of thousands of clusters in the low mass regime ($M_{500} leqslant 10^{14} M_odot$), for which the various sources of intra-cluster emission (gas, dust, synchrotron) will be of the same order of magnitude and hence require broad ground and space frequency coverage with a comparable spatial resolution for adequate separation.
Total mass is arguably the most fundamental property for cosmological studies with galaxy clusters. We investigate the present differences in the mass estimates obtained through independent X-ray, weak-lensing, and dynamical studies. We quantify the differences as the mean ratio 1-$b$=M$_{rm HE}$/M$_{rm WL,dyn}$, where HE refers to hydrostatic masses obtained from X-ray observations, WL refers to the results of weak-lensing measurements, and dyn refers to the mass estimates either from velocity dispersion or from the caustic technique. Recent X-ray masses reported by independent groups show average differences smaller than $sim$10$%$, posing a strong limit on the systematics that can be ascribed to the differences in the X-ray analysis when studying the hydrostatic bias. The mean ratio between our X-ray masses and the weak-lensing masses in the LC$^2$-single catalog is 1-$b$=0.74$pm$0.06. However, the mean mass ratios inferred from the WL masses of different projects vary by a large amount, with APEX-SZ showing a bias consistent with zero (1-$b$=1.02$pm$0.12), LoCuSS and CCCP/MENeaCS showing a significant difference (1-$b$=0.76$pm$0.09 and 1-$b$=0.77$pm$0.10, respectively), and WtG pointing to the largest deviation (1-$b$=0.61$pm$0.12). At odds with the WL results, the dynamical mass measurements show better agreement with the X-ray hydrostatic masses, although there are significant differences when relaxed or disturbed clusters are used. The different ratios obtained using different mass estimators suggest that there are still systematics that are not accounted for in all the techniques used to recover cluster masses. This prevents the determination of firm constraints on the level of hydrostatic mass bias in galaxy clusters.
111 - Kamal Bora , Shantanu Desai 2021
We carry out a test of the cosmic distance duality relation using a sample of 52 SPT-SZ clusters, along with X-ray measurements from XMM-Newton. To carry out this test, we need an estimate of the luminosity distance ($D_L$) at the redshift of the cluster. For this purpose, we use three independent methods: directly using $D_L$ from the closest Type Ia Supernovae from the Union 2.1 sample, non-parametric reconstruction of $D_L$ using the same Union 2.1 sample, and finally using $H(z)$ measurements from cosmic chronometers and reconstructing $D_L$ using Gaussian Process regression. We use four different functions to characterize the deviations from CDDR. All our results for these ($4 times 3$) analyses are consistent with CDDR to within 1$sigma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا