Do you want to publish a course? Click here

Fast Gradient Methods for Uniformly Convex and Weakly Smooth Problems

102   0   0.0 ( 0 )
 Added by Jongho Park
 Publication date 2021
  fields
and research's language is English
 Authors Jongho Park




Ask ChatGPT about the research

In this paper, acceleration of gradient methods for convex optimization problems with weak levels of convexity and smoothness is considered. Starting from the universal fast gradient method which was designed to be an optimal method for weakly smooth problems whose gradients are Holder continuous, its momentum is modified appropriately so that it can also accommodate uniformly convex and weakly smooth problems. Differently from the existing works, fast gradient methods proposed in this paper do not use the restarting technique but use momentums that are suitably designed to reflect both the uniform convexity and the weak smoothness information of the target energy function. Both theoretical and numerical results that support the superiority of proposed methods are presented.



rate research

Read More

Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slaters condition, we establish the computation complexities of our methods for finding a nearly stationary point.
The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a $Oleft(1/k^{2}right)$ non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction.
The usual approach to developing and analyzing first-order methods for smooth convex optimization assumes that the gradient of the objective function is uniformly smooth with some Lipschitz constant $L$. However, in many settings the differentiable convex function $f(cdot)$ is not uniformly smooth -- for example in $D$-optimal design where $f(x):=-ln det(HXH^T)$, or even the univariate setting with $f(x) := -ln(x) + x^2$. Herein we develop a notion of relative smoothness and relative strong convexity that is determined relative to a user-specified reference function $h(cdot)$ (that should be computationally tractable for algorithms), and we show that many differentiable convex functions are relatively smooth with respect to a correspondingly fairly-simple reference function $h(cdot)$. We extend two standard algorithms -- the primal gradient scheme and the dual averaging scheme -- to our new setting, with associated computational guarantees. We apply our new approach to develop a new first-order method for the $D$-optimal design problem, with associated computational complexity analysis. Some of our results have a certain overlap with the recent work cite{bbt}.
86 - Zichong Li , Yangyang Xu 2020
First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated functional constraints. In this paper, we design a novel augmented Lagrangian (AL) based FOM for solving problems with non-convex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, while the latter is always fed with estimated multipliers by the iALM. We show a complexity result of $O(varepsilon^{-frac{5}{2}}|logvarepsilon|)$ for the proposed method to achieve an $varepsilon$-KKT point. This is the best known result. Theoretically, the hybrid method has lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems, and numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs and nonconvex QCQP. The numerical results demonstrate the efficiency of the proposed methods over existing ones.
Conditional gradient methods have attracted much attention in both machine learning and optimization communities recently. These simple methods can guarantee the generation of sparse solutions. In addition, without the computation of full gradients, they can handle huge-scale problems sometimes even with an exponentially increasing number of decision variables. This paper aims to significantly expand the application areas of these methods by presenting new conditional gradient methods for solving convex optimization problems with general affine and nonlinear constraints. More specifically, we first present a new constraint extrapolated condition gradient (CoexCG) method that can achieve an ${cal O}(1/epsilon^2)$ iteration complexity for both smooth and structured nonsmooth function constrained convex optimization. We further develop novel variants of CoexCG, namely constraint extrapolated and dual regularized conditional gradient (CoexDurCG) methods, that can achieve similar iteration complexity to CoexCG but allow adaptive selection for algorithmic parameters. We illustrate the effectiveness of these methods for solving an important class of radiation therapy treatment planning problems arising from healthcare industry. To the best of our knowledge, all the algorithmic schemes and their complexity results are new in the area of projection-free methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا