No Arabic abstract
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. However, to date there has been no systematic analysis of the quality of these publicly available datasets, or whether the datasets actually contain content in the languages they claim to represent. In this work, we manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4), and audit the correctness of language codes in a sixth (JW300). We find that lower-resource corpora have systematic issues: at least 15 corpora are completely erroneous, and a significant fraction contains less than 50% sentences of acceptable quality. Similarly, we find 82 corpora that are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-speakers of the languages in question, and supplement the human judgements with automatic analyses. Inspired by our analysis, we recommend techniques to evaluate and improve multilingual corpora and discuss the risks that come with low-quality data releases.
Most studies on word-level Quality Estimation (QE) of machine translation focus on language-specific models. The obvious disadvantages of these approaches are the need for labelled data for each language pair and the high cost required to maintain several language-specific models. To overcome these problems, we explore different approaches to multilingual, word-level QE. We show that these QE models perform on par with the current language-specific models. In the cases of zero-shot and few-shot QE, we demonstrate that it is possible to accurately predict word-level quality for any given new language pair from models trained on other language pairs. Our findings suggest that the word-level QE models based on powerful pre-trained transformers that we propose in this paper generalise well across languages, making them more useful in real-world scenarios.
As language models are trained on ever more text, researchers are turning to some of the largest corpora available. Unlike most other types of datasets in NLP, large unlabeled text corpora are often presented with minimal documentation, and best practices for documenting them have not been established. In this work we provide the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin with a high-level summary of the data, including distributions of where the text came from and when it was written. We then give more detailed analysis on salient parts of this data, including the most frequent sources of text (e.g., patents.google.com, which contains a significant percentage of machine translated and/or OCRd text), the effect that the filters had on the data (they disproportionately remove text in AAE), and evidence that some other benchmark NLP dataset examples are contained in the text. We release a web interface to an interactive, indexed copy of this dataset, encouraging the community to continuously explore and report additional findings.
Recent work has highlighted the advantage of jointly learning grounded sentence representations from multiple languages. However, the data used in these studies has been limited to an aligned scenario: the same images annotated with sentences in multiple languages. We focus on the more realistic disjoint scenario in which there is no overlap between the images in multilingual image--caption datasets. We confirm that training with aligned data results in better grounded sentence representations than training with disjoint data, as measured by image--sentence retrieval performance. In order to close this gap in performance, we propose a pseudopairing method to generate synthetically aligned English--German--image triplets from the disjoint sets. The method works by first training a model on the disjoint data, and then creating new triples across datasets using sentence similarity under the learned model. Experiments show that pseudopairs improve image--sentence retrieval performance compared to disjoint training, despite requiring no external data or models. However, we do find that using an external machine translation model to generate the synthetic data sets results in better performance.
We present MLQE-PE, a new dataset for Machine Translation (MT) Quality Estimation (QE) and Automatic Post-Editing (APE). The dataset contains eleven language pairs, with human labels for up to 10,000 translations per language pair in the following formats: sentence-level direct assessments and post-editing effort, and word-level good/bad labels. It also contains the post-edited sentences, as well as titles of the articles where the sentences were extracted from, and the neural MT models used to translate the text.