Do you want to publish a course? Click here

Nonlinear electric conductivity and light-induced charge transport in graphene

118   0   0.0 ( 0 )
 Added by Shunsuke Sato
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the quantum master equation approach, the nonlinear electric conductivity of graphene is investigated under static electric fields for various chemical potential shifts. The simulation results show that, as the field strength increases, the effective conductivity is firstly suppressed, reflecting the depletion of effective carriers due to the large displacement in the Brillouin zone caused by the strong field. Then, as the field strength exceeds $1$~MV/m, the effective conductivity increases, overcoming the carrier depletion via the Landau--Zener tunneling process. Based on the nonlinear behavior of the conductivity, the charge transport induced by few-cycle THz pulses is further studied to elucidate the ultrafast optical control of electric current in matter.



rate research

Read More

139 - M.M. Glazov , S.D. Ganichev 2013
The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference effects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects.
The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8x10^14 cm^(-2) has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T^2 component - that can be associated with electron-electron scattering - and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy.
A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is overscreened Coulomb impurities that behave like short-range scatterers. We anticipate that the conductivity $sigma(n)$ is linear in $n$ at high density and has a plateau at low density corresponding to a residual density of $n^* = sqrt{n_{rm imp} {tilde n}}$, where ${tilde n}$ is a constant which we estimate using a self-consistent Thomas-Fermi screening approximation to be ${tilde n} approx 0.01 ~q_{rm TF}^2 approx 140 times 10^{10} {rm cm}^{-2}$. Analytic results are derived for the conductivity as a function of the charged impurity density. We also comment on the temperature dependence of the bilayer conductivity.
We propose optical longitudinal conductivity as a realistic observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as resonant features in the conductivity, when resolved with respect to the probing frequency and the driving field strength. We demonstrate these features via a dissipative master equation approach which gives access to a frequency- and momentum-resolved electron distribution. This distribution follows the light-induced Floquet-Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore, we show that there are population
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا