Do you want to publish a course? Click here

Microscopic theory for the light-induced anomalous Hall effect in graphene

109   0   0.0 ( 0 )
 Added by Shunsuke Sato
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties.



rate research

Read More

Many striking non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids, ranging from light-induced superconductivity to Floquet-engineered topological phases. These effects are expected to lead to dramatic changes in electrical transport, but can only be comprehensively characterized or functionalized with a direct interface to electrical devices that operate at ultrafast speeds. Here, we make use of laser-triggered photoconductive switches to measure the ultrafast transport properties of monolayer graphene, driven by a mid-infrared femtosecond pulse of circularly polarized light. The goal of this experiment is to probe the transport signatures of a predicted light-induced topological band structure in graphene, similar to the one originally proposed by Haldane. We report the observation of an anomalous Hall effect in the absence of an applied magnetic field. We also extract quantitative properties of the non-equilibrium state. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect the effective band structure expected from Floquet theory. This includes a ~60 meV wide conductance plateau centered at the Dirac point, where a gap of approximately equal magnitude is expected to open. We also find that when the Fermi level lies within this plateau, the estimated anomalous Hall conductance saturates around ~1.8$pm$0.4 e$^2$/h.
Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet-Berry curvature also has a non-zero contribution. We further compute the Hall transport property of the massive Dirac fermion system with an intrinsic Hall effect in order to investigate the interplay of the intrinsic topological contribution and the extrinsic light-induced population contribution. As a result, we find that the contribution from the photocarrier population imbalance becomes significant in the strong field regime and it overcomes the intrinsic contribution. This finding clearly demonstrates that intrinsic transport properties of materials can be overwritten by external driving and may open a way to ultrafast optical-control of transport properties of materials.
We show that an energy gap is induced in graphene by light-matter coupling to a circularly polarized photon mode in a cavity. Using many-body perturbation theory we compute the electronic spectra which exhibit photon-dressed sidebands akin to Floquet sidebands for laser-driven materials. In contrast with Floquet topological insulators, in which a strictly quantized Hall response is induced by light only for off-resonant driving in the high-frequency limit, the photon-dressed Dirac fermions in the cavity show a quantized Hall response characterized by an integer Chern number. Specifically for graphene we predict that a Hall conductance of $2 e^2/h$ can be induced in the low-temperature limit.
274 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The quantum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
We propose an ultrafast all-optical anomalous Hall effect in two-dimensional (2D) semiconductors of hexagonal symmetry such as gapped graphene (GG), transition metal dichalcogenides (TMDCs), and hexagonal boron nitride (h-BN). To induce such an effect, the material is subjected to a sequence of two strong-field single-optical-cycle pulses: a chiral pump pulse followed within a few femtoseconds by a probe pulse linearly polarized in the armchair direction of the 2D lattice. Due to the effect of topological resonance, the first (pump) pulse induces a large chirality (valley polarization) in the system, while the second pulse generates a femtosecond pulse of the anomalous Hall current. The proposed effect is the fundamentally the fastest all-optical anomalous Hall effect possible in nature. It can be applied to ultrafast all-optical storage and processing of information, both classical and quantum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا