Do you want to publish a course? Click here

IPAPRec: A promising tool for learning high-performance mapless navigation skills with deep reinforcement learning

157   0   0.0 ( 0 )
 Added by Wei Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper studies how to improve the generalization performance and learning speed of the navigation agents trained with deep reinforcement learning (DRL). DRL exhibits huge potential in mapless navigation, but DRL agents performing well in training scenarios are found to perform poorly in unfamiliar real-world scenarios. In this work, we present the representation of LiDAR readings as a key factor behind agents performance degradation and propose a simple but powerful input pre-processing (IP) approach to improve the agents performance. As this approach uses adaptively parametric reciprocal functions to pre-process LiDAR readings, we refer to this approach as IPAPRec and its normalized version as IPAPRecN. IPAPRec/IPAPRecN can highlight important short-distance values and compress the range of less-important long-distance values in laser scans, which well addressed the issues induced by conventional representations of laser scans. Their high performance is validated by extensive simulation and real-world experiments. The results show that our methods can substantially improve agents success rates and greatly reduce the training time compared to conventional methods.



rate research

Read More

Safe and efficient navigation through human crowds is an essential capability for mobile robots. Previous work on robot crowd navigation assumes that the dynamics of all agents are known and well-defined. In addition, the performance of previous methods deteriorates in partially observable environments and environments with dense crowds. To tackle these problems, we propose decentralized structural-Recurrent Neural Network (DS-RNN), a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation. We train our network with model-free deep reinforcement learning without any expert supervision. We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios. We successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i.
We propose a method to tackle the problem of mapless collision-avoidance navigation where humans are present using 2D laser scans. Our proposed method uses ego-safety to measure collision from the robots perspective while social-safety to measure the impact of our robots actions on surrounding pedestrians. Specifically, the social-safety part predicts the intrusion impact of our robots action into the interaction area with surrounding humans. We train the policy using reinforcement learning on a simple simulator and directly evaluate the learned policy in Gazebo and real robot tests. Experiments show the learned policy can be smoothly transferred without any fine tuning. We observe that our method demonstrates time-efficient path planning behavior with high success rate in mapless navigation tasks. Furthermore, we test our method in a navigation among dynamic crowds task considering both low and high volume traffic. Our learned policy demonstrates cooperative behavior that actively drives our robot into traffic flows while showing respect to nearby pedestrians. Evaluation videos are at https://sites.google.com/view/ssw-batman
209 - Yuke Zhu , Ziyu Wang , Josh Merel 2018
We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent. We apply this approach to robotic manipulation tasks and train end-to-end visuomotor policies that map directly from RGB camera inputs to joint velocities. We demonstrate that our approach can solve a wide variety of visuomotor tasks, for which engineering a scripted controller would be laborious. In experiments, our reinforcement and imitation agent achieves significantly better performances than agents trained with reinforcement learning or imitation learning alone. We also illustrate that these policies, trained with large visual and dynamics variations, can achieve preliminary successes in zero-shot sim2real transfer. A brief visual description of this work can be viewed in https://youtu.be/EDl8SQUNjj0
This paper proposes an end-to-end deep reinforcement learning approach for mobile robot navigation with dynamic obstacles avoidance. Using experience collected in a simulation environment, a convolutional neural network (CNN) is trained to predict proper steering actions of a robot from its egocentric local occupancy maps, which accommodate various sensors and fusion algorithms. The trained neural network is then transferred and executed on a real-world mobile robot to guide its local path planning. The new approach is evaluated both qualitatively and quantitatively in simulation and real-world robot experiments. The results show that the map-based end-to-end navigation model is easy to be deployed to a robotic platform, robust to sensor noise and outperforms other existing DRL-based models in many indicators.
Recent work has shown results on learning navigation policies for idealized cylinder agents in simulation and transferring them to real wheeled robots. Deploying such navigation policies on legged robots can be challenging due to their complex dynamics, and the large dynamical difference between cylinder agents and legged systems. In this work, we learn hierarchical navigation policies that account for the low-level dynamics of legged robots, such as maximum speed, slipping, contacts, and learn to successfully navigate cluttered indoor environments. To enable transfer of policies learned in simulation to new legged robots and hardware, we learn dynamics-aware navigation policies across multiple robots with robot-specific embeddings. The learned embedding is optimized on new robots, while the rest of the policy is kept fixed, allowing for quick adaptation. We train our policies across three legged robots in simulation - 2 quadrupeds (A1, AlienGo) and a hexapod (Daisy). At test time, we study the performance of our learned policy on two new legged robots in simulation (Laikago, 4-legged Daisy), and one real-world quadrupedal robot (A1). Our experiments show that our learned policy can sample-efficiently generalize to previously unseen robots, and enable sim-to-real transfer of navigation policies for legged robots.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا