Do you want to publish a course? Click here

Grand challenges and emergent modes of convergence science

260   0   0.0 ( 0 )
 Added by Alexander Petersen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To address complex problems, scholars are increasingly faced with challenges of integrating diverse knowledge domains. We analyzed the evolution of this convergence paradigm in the broad ecosystem of brain science, which provides a real-time testbed for evaluating two modes of cross-domain integration - subject area exploration via expansive learning and cross-disciplinary collaboration among domain experts. We show that research involving both modes features a 16% citation premium relative to a mono-disciplinary baseline. Further comparison of research integrating neighboring versus distant research domains shows that the cross-disciplinary mode is essential for integrating across relatively large disciplinary distances. Yet we find research utilizing cross-domain subject area exploration alone - a convergence shortcut - to be growing in prevalence at roughly 3% per year, significantly faster than the alternative cross-disciplinary mode, despite being less effective at integrating domains and markedly less impactful. By measuring shifts in the prevalence and impact of different convergence modes in the 5-year intervals before and after 2013, our results indicate that these counterproductive patterns may relate to competitive pressures associated with global Human Brain flagship funding initiatives. Without additional policy guidance, such Grand Challenge flagships may unintentionally incentivize such convergence shortcuts, thereby undercutting the advantages of cross-disciplinary teams in tackling challenges calling on convergence.



rate research

Read More

84 - Julian D. Cortes 2021
This study presents longitudinal evidence on the dissension of Management and Business Research (MBR) in Latin America and the Caribbean (LAC). It looks after intellectual bridges linking clusters among such dissension. It was implemented a coword network analysis to a sample of 12,000+ articles published by authors from LAC during 1998-2017. Structural network scores showed an increasing number of keywords and mean degree but decreasing modularity and density. The intellectual bridges were those of the cluster formed by disciplines/fields that tend toward consensus (e.g., mathematical models) and not by core MBR subjects (e.g., strategic planning).
Knowledge of how science is consumed in public domains is essential for a deeper understanding of the role of science in human society. While science is heavily supported by public funding, common depictions suggest that scientific research remains an isolated or ivory tower activity, with weak connectivity to public use, little relationship between the quality of research and its public use, and little correspondence between the funding of science and its public use. This paper introduces a measurement framework to examine public good features of science, allowing us to study public uses of science, the public funding of science, and how use and funding relate. Specifically, we integrate five large-scale datasets that link scientific publications from all scientific fields to their upstream funding support and downstream public uses across three public domains - government documents, the news media, and marketplace invention. We find that the public uses of science are extremely diverse, with different public domains drawing distinctively across scientific fields. Yet amidst these differences, we find key forms of alignment in the interface between science and society. First, despite concerns that the public does not engage high-quality science, we find universal alignment, in each scientific field and public domain, between what the public consumes and what is highly impactful within science. Second, despite myriad factors underpinning the public funding of science, the resulting allocation across fields presents a striking alignment with the fields collective public use. Overall, public uses of science present a rich landscape of specialized consumption, yet collectively science and society interface with remarkable, quantifiable alignment between scientific use, public use, and funding.
The ability to confront new questions, opportunities, and challenges is of fundamental importance to human progress and the resilience of human societies, yet the capacity of science to meet new demands remains poorly understood. Here we deploy a new measurement framework to investigate the scientific response to the COVID-19 pandemic and the adaptability of science as a whole. We find that science rapidly shifted to engage COVID-19 following the advent of the virus, with scientists across all fields making large jumps from their prior research streams. However, this adaptive response reveals a pervasive pivot penalty, where the impact of the new research steeply declines the further the scientists move from their prior work. The pivot penalty is severe amidst COVID-19 research, but it is not unique to COVID-19. Rather it applies nearly universally across the sciences, and has been growing in magnitude over the past five decades. While further features condition pivoting, including a scientists career stage, prior expertise and impact, collaborative scale, the use of new coauthors, and funding, we find that the pivot penalty persists and remains substantial regardless of these features, suggesting the pivot penalty acts as a fundamental friction that governs sciences ability to adapt. The pivot penalty not only holds key implications for the design of the scientific system and human capacity to confront emergent challenges through scientific advance, but may also be relevant to other social and economic systems, where shifting to meet new demands is central to survival and success.
Science is a growing system, exhibiting ~4% annual growth in publications and ~1.8% annual growth in the number of references per publication. Combined these trends correspond to a 12-year doubling period in the total supply of references, thereby challenging traditional methods of evaluating scientific production, from researchers to institutions. Against this background, we analyzed a citation network comprised of 837 million references produced by 32.6 million publications over the period 1965-2012, allowing for a temporal analysis of the `attention economy in science. Unlike previous studies, we analyzed the entire probability distribution of reference ages - the time difference between a citing and cited paper - thereby capturing previously overlooked trends. Over this half-century period we observe a narrowing range of attention - both classic and recent literature are being cited increasingly less, pointing to the important role of socio-technical processes. To better understand the impact of exponential growth on the underlying knowledge network we develop a network-based model, featuring the redirection of scientific attention via publications reference lists, and validate the model against several empirical benchmarks. We then use the model to test the causal impact of real paradigm shifts, thereby providing guidance for science policy analysis. In particular, we show how perturbations to the growth rate of scientific output affects the reference age distribution and the functionality of the vast science citation network as an aid for the search & retrieval of knowledge. In order to account for the inflation of science, our study points to the need for a systemic overhaul of the counting methods used to evaluate citation impact - especially in the case of evaluating science careers, which can span several decades and thus several doubling periods.
We analyzed Medical Subject Headings (MeSH) from 21.6 million research articles indexed by PubMed to map this vast space of entities and their relations, providing insights into the origins and future of biomedical convergence. Detailed analysis of MeSH co-occurrence networks identifies three robust knowledge clusters: the vast universe of microscopic biological entities and structures; systems, disease and diagnostics; and emergent biological and social phenomena underlying the complex problems driving the health, behavioral and brain science frontiers. These domains integrated from the 1990s onward by way of technological and informatic capabilities that introduced highly controllable, scalable and permutable research processes and invaluable imaging techniques for illuminating fundamental structure-function-behavior questions. Article-level analysis confirms a positive relationship between team size and topical diversity, and shows convergence to be increasing in prominence but with recent saturation. Together, our results invite additional policy support for cross-disciplinary team assembly to harness transdisciplinary convergence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا