No Arabic abstract
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum coherence by non-Hermitian driving. Besides, the entanglement between the two subsystems also decays with the boosting of non-hermitian driving strength, which provides another evidence that non-Hermitian driving will protect quantum coherence. The physics behind this phenomenon is the domination of the quasieigenstate with maximum imaginary value of the quasieigenvalue on the dynamics of the non-Hermitian system. Our discovery establishes a restoration mechanism of quantum coherence in interacting and dissipative quantum systems, which is highly relevant to experiments in diverse fields from many-body physics to quantum information.
In this paper, we present a coherence protection method based upon a multidimensional generalization of the Quantum Zeno Effect, as well as ideas from the coding theory. The non-holonomic control technique is employed as a physical tool which allows its effective implementation. The two limiting cases of small and large quantum systems are considered.
The protection of the coherence of open quantum systems against the influence of their environment is a very topical issue. A scheme is proposed here which protects a general quantum system from the action of a set of arbitrary uncontrolled unitary evolutions. This method draws its inspiration from ideas of standard error-correction (ancilla adding, coding and decoding) and the Quantum Zeno Effect. A pedagogical demonstration of our method on a simple atomic system, namely a Rubidium isotope, is proposed.
The protection of qubit coherence is an essential task in order to build a practical quantum computer able to manipulate, store and read quantum information with a high degree of fidelity. Recently, it has been proposed to increase the operation time of a qubit by means of strong pulses to achieve a dynamical decoupling of the qubit from its environment. We propose and demonstrate a simple and highly efficient alternative pulse protocol based on Floquet modes, which increases the decoherence time in a number of materials with different spin Hamiltonians and environments. We demonstrate the regime $T_2approx T_1$, thus providing a route for spin qubits and spin ensembles to be used in quantum information processing and storage.
Dense ensembles of spin qubits are valuable for quantum applications, even though their coherence protection remains challenging. Continuous dynamical decoupling can protect ensemble qubits from noise while allowing gate operations, but it is hindered by the additional noise introduced by the driving. Concatenated continuous driving (CCD) techniques can, in principle, mitigate this problem. Here we provide deeper insights into the dynamics under CCD, based on Floquet theory, that lead to optimized state protection by adjusting driving parameters in the CCD scheme to induce mode evolution control. We experimentally demonstrate the improved control by simultaneously addressing a dense Nitrogen-vacancy (NV) ensemble with $10^{10}$ spins. We achieve an experimental 15-fold improvement in coherence time for an arbitrary, unknown state, and a 500-fold improvement for an arbitrary, known state, corresponding to driving the sidebands and the center band of the resulting Mollow triplet, respectively. We can achieve such coherence time gains by optimizing the driving parameters to take into account the noise affecting our system. By extending the generalized Bloch equation approach to the CCD scenario, we identify the noise sources that dominate the decay mechanisms in NV ensembles, confirm our model by experimental results, and identify the driving strengths yielding optimal coherence. Our results can be directly used to optimize qubit coherence protection under continuous driving and bath driving, and enable applications in robust pulse design and quantum sensing.
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.