Do you want to publish a course? Click here

Knowledge Discovery in Surveys using Machine Learning: A Case Study of Women in Entrepreneurship in UAE

317   0   0.0 ( 0 )
 Added by Syed Farhan Ahmad
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge Discovery plays a very important role in analyzing data and getting insights from them to drive better business decisions. Entrepreneurship in a Knowledge based economy contributes greatly to the development of a countrys economy. In this paper, we analyze surveys that were conducted on women in entrepreneurship in UAE. Relevant insights are extracted from the data that can help us to better understand the current landscape of women in entrepreneurship and predict the future as well. The features are analyzed using machine learning to drive better business decisions in the future.



rate research

Read More

Artificial intelligence (AI) has evolved considerably in the last few years. While applications of AI is now becoming more common in fields like retail and marketing, application of AI in solving problems related to developing countries is still an emerging topic. Specially, AI applications in resource-poor settings remains relatively nascent. There is a huge scope of AI being used in such settings. For example, researchers have started exploring AI applications to reduce poverty and deliver a broad range of critical public services. However, despite many promising use cases, there are many dataset related challenges that one has to overcome in such projects. These challenges often take the form of missing data, incorrectly collected data and improperly labeled variables, among other factors. As a result, we can often end up using data that is not representative of the problem we are trying to solve. In this case study, we explore the challenges of using such an open dataset from India, to predict an important health outcome. We highlight how the use of AI without proper understanding of reporting metrics can lead to erroneous conclusions.
In recent years, machine learning has received increased interest both as an academic research field and as a solution for real-world business problems. However, the deployment of machine learning models in production systems can present a number of issues and concerns. This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications and extracts practical considerations corresponding to stages of the machine learning deployment workflow. Our survey shows that practitioners face challenges at each stage of the deployment. The goal of this paper is to layout a research agenda to explore approaches addressing these challenges.
With the global refugee crisis at a historic high, there is a growing need to assess the impact of refugee settlements on their hosting countries and surrounding environments. Because fires are an important land management practice in smallholder agriculture in sub-Saharan Africa, burned area (BA) mappings can help provide information about the impacts of land management practices on local environments. However, a lack of BA ground-truth data in much of sub-Saharan Africa limits the use of highly scalable deep learning (DL) techniques for such BA mappings. In this work, we propose a scalable transfer learning approach to study BA dynamics in areas with little to no ground-truth data such as the West Nile region in Northern Uganda. We train a deep learning model on BA ground-truth data in Portugal and propose the application of that model on refugee-hosting districts in West Nile between 2015 and 2020. By comparing the district-level BA dynamic with the wider West Nile region, we aim to add understanding of the land management impacts of refugee settlements on their surrounding environments.
Machine learning is a general-purpose technology holding promises for many interdisciplinary research problems. However, significant barriers exist in crossing disciplinary boundaries when most machine learning tools are developed in different areas separately. We present Pykale - a Python library for knowledge-aware machine learning on graphs, images, texts, and videos to enable and accelerate interdisciplinary research. We formulate new green machine learning guidelines based on standard software engineering practices and propose a novel pipeline-based application programming interface (API). PyKale focuses on leveraging knowledge from multiple sources for accurate and interpretable prediction, thus supporting multimodal learning and transfer learning (particularly domain adaptation) with latest deep learning and dimensionality reduction models. We build PyKale on PyTorch and leverage the rich PyTorch ecosystem. Our pipeline-based API design enforces standardization and minimalism, embracing green machine learning concepts via reducing repetitions and redundancy, reusing existing resources, and recycling learning models across areas. We demonstrate its interdisciplinary nature via examples in bioinformatics, knowledge graph, image/video recognition, and medical imaging.
Robustness is of central importance in machine learning and has given rise to the fields of domain generalization and invariant learning, which are concerned with improving performance on a test distribution distinct from but related to the training distribution. In light of recent work suggesting an intimate connection between fairness and robustness, we investigate whether algorithms from robust ML can be used to improve the fairness of classifiers that are trained on biased data and tested on unbiased data. We apply Invariant Risk Minimization (IRM), a domain generalization algorithm that employs a causal discovery inspired method to find robust predictors, to the task of fairly predicting the toxicity of internet comments. We show that IRM achieves better out-of-distribution accuracy and fairness than Empirical Risk Minimization (ERM) methods, and analyze both the difficulties that arise when applying IRM in practice and the conditions under which IRM will likely be effective in this scenario. We hope that this work will inspire further studies of how robust machine learning methods relate to algorithmic fairness.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا