Do you want to publish a course? Click here

Deep Dense Multi-scale Network for Snow Removal Using Semantic and Geometric Priors

275   0   0.0 ( 0 )
 Added by Kaihao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Images captured in snowy days suffer from noticeable degradation of scene visibility, which degenerates the performance of current vision-based intelligent systems. Removing snow from images thus is an important topic in computer vision. In this paper, we propose a Deep Dense Multi-Scale Network (textbf{DDMSNet}) for snow removal by exploiting semantic and geometric priors. As images captured in outdoor often share similar scenes and their visibility varies with depth from camera, such semantic and geometric information provides a strong prior for snowy image restoration. We incorporate the semantic and geometric maps as input and learn the semantic-aware and geometry-aware representation to remove snow. In particular, we first create a coarse network to remove snow from the input images. Then, the coarsely desnowed images are fed into another network to obtain the semantic and geometric labels. Finally, we design a DDMSNet to learn semantic-aware and geometry-aware representation via a self-attention mechanism to produce the final clean images. Experiments evaluated on public synthetic and real-world snowy images verify the superiority of the proposed method, offering better results both quantitatively and qualitatively.



rate research

Read More

66 - Dawei Feng , Kele Xu , Haibo Mi 2018
Acoustic scene classification is an intricate problem for a machine. As an emerging field of research, deep Convolutional Neural Networks (CNN) achieve convincing results. In this paper, we explore the use of multi-scale Dense connected convolutional neural network (DenseNet) for the classification task, with the goal to improve the classification performance as multi-scale features can be extracted from the time-frequency representation of the audio signal. On the other hand, most of previous CNN-based audio scene classification approaches aim to improve the classification accuracy, by employing different regularization techniques, such as the dropout of hidden units and data augmentation, to reduce overfitting. It is widely known that outliers in the training set have a high negative influence on the trained model, and culling the outliers may improve the classification performance, while it is often under-explored in previous studies. In this paper, inspired by the silence removal in the speech signal processing, a novel sample dropout approach is proposed, which aims to remove outliers in the training dataset. Using the DCASE 2017 audio scene classification datasets, the experimental results demonstrates the proposed multi-scale DenseNet providing a superior performance than the traditional single-scale DenseNet, while the sample dropout method can further improve the classification robustness of multi-scale DenseNet.
This paper introduces a new benchmarking dataset for marine snow removal of underwater images. Marine snow is one of the main degradation sources of underwater images that are caused by small particles, e.g., organic matter and sand, between the underwater scene and photosensors. We mathematically model two typical types of marine snow from the observations of real underwater images. The modeled artifacts are synthesized with underwater images to construct large-scale pairs of ground-truth and degraded images to calculate objective qualities for marine snow removal and to train a deep neural network. We propose two marine snow removal tasks using the dataset and show the first benchmarking results of marine snow removal. The Marine Snow Removal Benchmarking Dataset is publicly available online.
In this paper, we propose a Multi-Scale Boosted Dehazing Network with Dense Feature Fusion based on the U-Net architecture. The proposed method is designed based on two principles, boosting and error feedback, and we show that they are suitable for the dehazing problem. By incorporating the Strengthen-Operate-Subtract boosting strategy in the decoder of the proposed model, we develop a simple yet effective boosted decoder to progressively restore the haze-free image. To address the issue of preserving spatial information in the U-Net architecture, we design a dense feature fusion module using the back-projection feedback scheme. We show that the dense feature fusion module can simultaneously remedy the missing spatial information from high-resolution features and exploit the non-adjacent features. Extensive evaluations demonstrate that the proposed model performs favorably against the state-of-the-art approaches on the benchmark datasets as well as real-world hazy images.
We present a general technique that performs both artifact removal and image compression. For artifact removal, we input a JPEG image and try to remove its compression artifacts. For compression, we input an image and process its 8 by 8 blocks in a sequence. For each block, we first try to predict its intensities based on previous blocks; then, we store a residual with respect to the input image. Our technique reuses JPEGs legacy compression and decompression routines. Both our artifact removal and our image compression techniques use the same deep network, but with different training weights. Our technique is simple and fast and it significantly improves the performance of artifact removal and image compression.
Coronary calcium causes beam hardening and blooming artifacts on cardiac computed tomography angiography (CTA) images, which lead to overestimation of lumen stenosis and reduction of diagnostic specificity. To properly remove coronary calcification and restore arterial lumen precisely, we propose a machine learning-based method with a multi-step inpainting process. We developed a new network configuration, Dense-Unet, to achieve optimal performance with low computational cost. Results after the calcium removal process were validated by comparing with gold-standard X-ray angiography. Our results demonstrated that removing coronary calcification from images with the proposed approach was feasible, and may potentially improve the diagnostic accuracy of CTA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا