Do you want to publish a course? Click here

Quantum sensing with superconducting circuits

69   0   0.0 ( 0 )
 Added by Sergey Danilin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensing and metrology play an important role in fundamental science and applications, by fulfilling the ever-present need for more precise data sets, and by allowing to make more reliable conclusions on the validity of theoretical models. Sensors are ubiquitous, they are used in applications across a diverse range of fields including gravity imaging, geology, navigation, security, timekeeping, spectroscopy, chemistry, magnetometry, healthcare, and medicine. Current progress in quantum technologies inevitably triggers the exploration of quantum systems to be used as sensors with new and improved capabilities. This perspective initially provides a brief review of existing and tested quantum sensing systems, before discussing future possible directions of superconducting quantum circuits use for sensing and metrology: superconducting sensors including many entangled qubits and schemes employing Quantum Error Correction. The perspective also lists future research directions that could be of great value beyond quantum sensing, e.g. for applications in quantum computation and simulation.



rate research

Read More

Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.
A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capacitively coupled chains of superconducting devices. In particular, we elaborate how to achieve the wanted operations to create and manipulate the topological quantum states, providing an experimentally feasible scenario to access the topological memory and to build the anyonic interferometry.
Bosonic modes have wide applications in various quantum technologies, such as optical photons for quantum communication, magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time. However, standard Gaussian operations (e.g., beam splitting and two-mode squeezing) are insufficient for universal quantum computing. The major challenge is to introduce additional nonlinear control beyond Gaussian operations without adding significant bosonic loss or decoherence. Here we review recent advances in universal control of a single bosonic code with superconducting circuits, including unitary control, quantum feedback control, driven-dissipative control and holonomic dissipative control. Various approaches to entangling different bosonic modes are also discussed.
Advanced quantum information science and technology (QIST) applications place exacting de- mands on optical components. Quantum waveguide circuits offer a route to scalable QIST on a chip. Superconducting single-photon detectors (SSPDs) provide infrared single-photon sensitivity combined with low dark counts and picosecond timing resolution. In this study we bring these two technologies together. Using SSPDs we observe a two-photon interference visibility of 92.3pm1.0% in a silica-on-silicon waveguide directional coupler at lamda = 804 nm-higher than that measured with silicon detectors (89.9pm0.3%). We further operated controlled-NOT gate and quantum metrology circuits with SSPDs. These demonstrations present a clear path to telecom-wavelength quantum waveguide circuits.
The ability to generate particles from the quantum vacuum is one of the most profound consequences of Heisenbergs uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, have been used in the experimental demonstration of the dynamical Casimir effect, and may soon be able to realize the elusive verification of analogue Hawking radiation. This article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analogue, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا