Do you want to publish a course? Click here

Advanced Accelerator Concepts

95   0   0.0 ( 0 )
 Added by Massimo Ferrario
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have seen spectacular progress in the development of innovative acceleration methods that are not based on traditional RF accelerating structures. These novel developments are at the interface of laser, plasma and accelerator physics and may potentially lead to much more compact and cost-effective accelerator facilities. While primarily focusing on the ability to accelerate charged particles with much larger gradients than traditional RF structures, these new techniques have yet to demonstrate comparable performances to RF structures in terms of both beam parameters and reproducibility. To guide the developments beyond the necessary basic R&D and concept validations, a common understanding and definition of required performance and beam parameters for an operational user facility is now needed. These innovative user facilities can include table-top light sources, medical accelerators, industrial accelerators or even high-energy colliders. This paper will review the most promising developments in new acceleration methods and it will present the status of on-going projects.

rate research

Read More

106 - J.-L. Vay , A. Huebl , R. Lehe 2021
Computer modeling is essential to research on Advanced Accelerator Concepts (AAC), as well as to their design and operation. This paper summarizes the current status and future needs of AAC systems and reports on several key aspects of (i) high-performance computing (including performance, portability, scalability, advanced algorithms, scalable I/Os and In-Situ analysis), (ii) the benefits of ecosystems with integrated workflows based on standardized input and output and with integrated frameworks developed as a community, and (iii) sustainability and reliability (including code robustness and usability).
60 - W. Herr 2016
This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.
A Muon Collider poses a number of challenging problems in the lattice design - low beta-star, small circumference, large physical and dynamic aperture - which must be solved in order to realize the unique opportunities it offers for the high-energy physics. This contribution presents basic solutions which make it possible to achieve the goals for both the energy frontier collider and the Higgs factory with Nb3Sn magnet parameters.
207 - Sacha E. Kopp 2006
Neutrino beams at from high-energy proton accelerators have been instrumental discovery tools in particle physics. Neutrino beams are derived from the decays of charged pi and K mesons, which in turn are created from proton beams striking thick nuclear targets. The precise selection and manipulation of the pi/K beam control the energy spectrum and type of neutrino beam. This article describes the physics of particle production in a target and manipulation of the particles to derive a neutrino beam, as well as numerous innovations achieved at past experimental facilities.
The present Report concerns the current status of the Italian Tau/Charm accelerator project and in particular discusses the issues related to the lattice design, to the accelerators systems and to the associated conventional facilities. The project aims at realizing a variable energy Flavor Factory between 1 and 4.6 GeV in the center of mass, and succeeds to the SuperB project from which it inherits most of the solutions proposed in this document. The work comes from a cooperation involving the INFN Frascati National Laboratories accelerator experts, the young newcomers, mostly engineers, of the Cabibbo Lab consortium and key collaborators from external laboratories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا