No Arabic abstract
The creation of an electron space charge in a dipole magnetic trap and the subsequent injection of positrons has been experimentally demonstrated. Positrons (5eV) were magnetically guided from their source and injected into the trapping field generated by a permanent magnet (0.6T at the poles) using a cross field E $times$ B drift, requiring tailored electrostatic and magnetic fields. The electron cloud is created by thermionic emission from a tungsten filament. The maximum space charge potential of the electron cloud reaches -42V, which is consistent with an average electron density of ($4 pm 2$) $times 10^{12}$ $text{m}^{-3}$ and a Debye length of ($2 pm 1$) $text{cm}$. We demonstrate that the presence of this space potential does not hamper efficient positron injection. Understanding the effects of the negative space charge on the injection and confinement of positrons represents an important intermediate step towards the production of a confined electron-positron pair plasma.
We present a novel electron injection scheme for plasma wakefield acceleration. The method is based on recently proposed technique of fast electron generation via laser-solid interaction: a femtosecond laser pulse with the energy of tens of mJ hitting a dense plasma target at $45^o$ angle expels a well collimated bunch of electrons and accelerates these close to the specular direction up to several MeVs. We study trapping of these fast electrons by a quasi-linear wakefield excited by an external beam driver in a surrounding low density plasma. This configuration can be relevant to the AWAKE experiment at CERN. We vary different injection parameters: the phase and angle of injection, the laser pulse energy. An approximate trapping condition is derived for a linear axisymmetric wake. It is used to optimise the trapped charge and is verified by three-dimensional particle-in-cell simulations. It is shown that a quasi-linear plasma wave with the accelerating field $sim$ 2.5 GV/m can trap electron bunches with $sim$ 100 pC charge, $sim$ 60 $mu$m transverse normalized emittance and accelerate them to energies of several GeV with the spread $lesssim$ 1 % after 10 m.
A novel approach for positron injection and acceleration in laser driven plasma wakefield is proposed. A theoretical model is developed and confirmed through PIC simulation. One ring-shaped beam and one co-axially propagating Gaussian beam drive wakefields in a preformed plasma volume filled with both electrons and positrons. The lasers ponderomotive force as well as the charge separation force in the front bucket of the first bubble are utilized to provide the transverse momenta of injected positrons and those positrons can be trapped by the focusing field and then accelerated by the wakefield. The simulation shows that a relatively high-charge, quasi-monoenergetic positron beams can be obtained.
MagLIF is a fairly new fusion concept using a puled-power generator as the main driver. This concept uses a Z-pinch configuration where the implosion is driven by the Z-machine using 27 MA of electrical current in 100 ns. Since the implosion time is long compared to the heat diffusion time of a non-magnetized plasma, MagLIF requires an initial axial magnetic of 30T to reduce heat losses to the liner wall. Since the field needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself, the rise time must exceed tens of microseconds. Any coil capable of producing such field on that long a pulse-length is inevitably bulky. The space required to house the coil near the liner increase the inductance of the load, which becomes problematic since the voltage at the load cannot exceed what the driver can already provide. Yet, the enormous amount of current that the Z-machine can provide could be used to produce the required 30 T by tilting the current posts surrounding the liner. However, the field penetration is limited by the skin effect of the liner wall. This paper shows that when current densities are large enough, the material generate resistivity gradients which forces the current to diffusive across the liner wall much fast than the skin time. As a result, the 30T coil can be eliminated and replaced by return current posts with minimal helicity.
Recently a filamentation instability was observed when a laser-generated pair cloud interacted with an ambient plasma. The magnetic field it drove was strong enough to magnetize and accelerate the ambient electrons. It is of interest to determine if and how pair cloud-driven instabilities can accelerate ions in the laboratory or in astrophysical plasma. For this purpose, the expansion of a localized pair cloud with the temperature 400 keV into a cooler ambient electron-proton plasma is studied by means of one-dimensional particle-in-cell (PIC) simulations. The clouds expansion triggers the formation of electron phase space holes that accelerate some protons to MeV energies. Forthcoming lasers might provide the energy needed to create a cloud that can accelerate protons.
An external static magnetic field with its strength B~10T may result in the laser wake wave-breaking upon changing the electron motion in the vicinity of maximal density ramp of a wave period. This, as shown by numerical simulations, can change the resonance character of the electron self-injection in the laser wake-field; a total charge loaded in the acceleration phase of laser pulse wake can be controlled by a proper choice of the magnetic field strength.