Recently a filamentation instability was observed when a laser-generated pair cloud interacted with an ambient plasma. The magnetic field it drove was strong enough to magnetize and accelerate the ambient electrons. It is of interest to determine if and how pair cloud-driven instabilities can accelerate ions in the laboratory or in astrophysical plasma. For this purpose, the expansion of a localized pair cloud with the temperature 400 keV into a cooler ambient electron-proton plasma is studied by means of one-dimensional particle-in-cell (PIC) simulations. The clouds expansion triggers the formation of electron phase space holes that accelerate some protons to MeV energies. Forthcoming lasers might provide the energy needed to create a cloud that can accelerate protons.
The expansion of a charge-neutral cloud of electrons and positrons with the temperature 1 MeV into an unmagnetized ambient plasma is examined with a 2D particle-in-cell (PIC) simulation. The pair outflow drives solitary waves in the ambient protons. Their bipolar electric fields attract electrons of the outflowing pair cloud and repel positrons. These fields can reflect some of the protons thereby accelerating them to almost an MeV. Ion acoustic solitary waves are thus an efficient means to couple energy from the pair cloud to protons. The scattering of the electrons and positrons by the electric field slows down their expansion to a nonrelativistic speed. Only a dilute pair outflow reaches the expansion speed expected from the clouds thermal speed. Its positrons are more energetic than its electrons. In time an instability grows at the front of the dense slow-moving part of the pair cloud, which magnetizes the plasma. The instability is driven by the interaction of the outflowing positrons with the protons. These results shed light on how magnetic fields are created and ions are accelerated in pair-loaded astrophysical jets and winds.
The expansion of a radial blast shell into an ambient plasma is modeled with a particle-in-cell (PIC) simulation. The unmagnetized plasma consists of electrons and protons. The formation and evolution of an electrostatic shock is observed, which is trailed by ion-acoustic solitary waves that grow on the beam of the blast shell ions in the post-shock plasma. In spite of the initially radially symmetric outflow, the solitary waves become twisted and entangled and, hence, they break the radial symmetry of the flow. The waves and their interaction with the shocked ambient ions slows down the blast shell protons and brings the post-shock plasma closer to an equilibrium.
We present a one-dimensional model which gives a novel physical interpretation to the specific state of an ensemble of electrons continuously injected into an electrostatic potential well immersed in a strong applied magnetic field preventing radial expansion. When the space-charge field of the electrons accumulated in the potential well compensates the external electrostatic field, a force-free steady-state of the electron cloud forms. This state of equilibrium is known in another context as a squeezed state of an electron beam. It is shown that the spatial distribution of the electron number density in this steady-state correlates with the shape of the potential well. Perturbations of the steady-state propagate along the electron cloud in the form of Trivelpiece-Gould modes.
Particle-in-cell (PIC) simulations of collisionless jets of electrons and positrons in an ambient electron-proton plasma have revealed an acceleration of positrons at the expense of electron kinetic energy. The dominant instability within the jet was a filamentation instability between electrons, protons and positrons. In this work we show that a filamentation instability, between an initially unmagnetized ambient electron-proton plasma at rest and a beam of pair plasma that moves through it at a non-relativistic speed, indeed results in preferential positron acceleration. Filaments form that are filled predominantly with particles with the same direction of their electric current vector. Positron filaments are separated by electromagnetic fields from beam electron filaments. Some particles can cross the field boundary and enter the filament of the other species. Positron filaments can neutralize their net charge by collecting the electrons of the ambient plasma while protons cannot easily follow the beam electron filaments. Positron filaments can thus be compressed to a higher density and temperature than the beam electron filaments. Filament mergers, which take place after the exponential growth phase of the instability has ended, lead to an expansion of the beam electron filaments, which amplifies the magnetic field they generate and induces an electric field in this filament. Beam electrons lose a substantial fraction of their kinetic energy to the electric field. Some positrons in the beam electron filament are accelerated by the induced electric field to almost twice their initial speed. The simulations show that a weaker electric field is induced in the positron filament and particles in this filament hardly change their speed.
The expansion of a thermal pressure-driven radial blast shell into a dilute ambient plasma is examined with two-dimensional PIC simulations. The purpose is to determine if laminar shocks form in a collisionless plasma that resemble their magnetohydrodynamic counterparts. The ambient plasma is composed of electrons with the temperature 2 keV and cool fully ionized nitrogen ions. It is permeated by a spatially uniform magnetic field. A forward shock forms between the shocked ambient medium and the pristine ambient medium, which changes from an ion acoustic one through a slow magnetosonic one to a fast magnetosonic shock with increasing shock propagation angles relative to the magnetic field. The slow magnetosonic shock that propagates obliquely to the magnetic field changes into a tangential discontinuity for a perpendicular propagation direction, which is in line with the magnetohydrodynamic model. The expulsion of the magnetic field by the expanding blast shell triggers an electron-cyclotron drift instability.
M. E. Dieckmann
,A. Alejo
,G. Sarri
.
(2018)
.
"One-dimensional thermal pressure-driven expansion of a pair cloud into an electron-proton plasma"
.
Mark Dieckmann
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا