We extend work of the first author and Khoussainov to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.
In contrast to being automatic, being Cayley automatic emph{a priori} has no geometric consequences. Specifically, Cayley graphs of automatic groups enjoy a fellow traveler property. Here we study a distance function introduced by the first author and Trakuldit which aims to measure how far a Cayley automatic group is from being automatic, in terms of how badly the Cayley graph fails the fellow traveler property. The first author and Trakuldit showed that if it fails by at most a constant amount, then the group is in fact automatic. In this article we show that for a large class of non-automatic Cayley automatic groups this function is bounded below by a linear function in a precise sense defined herein. In fact, for all Cayley automatic groups which have super-quadratic Dehn function, or which are not finitely presented, we can construct a non-decreasing function which (1) depends only on the group and (2) bounds from below the distance function for any Cayley automatic structure on the group.
We show that if $mathsf V$ is a semigroup pseudovariety containing the finite semilattices and contained in $mathsf {DS}$, then it has a basis of pseudoidentities between finite products of regular pseudowords if, and only if, the corresponding variety of languages is closed under bideterministic product. The key to this equivalence is a weak generalization of the existence and uniqueness of $mathsf J$-reduced factorizations. This equational approach is used to address the locality of some pseudovarieties. In particular, it is shown that $mathsf {DH}capmathsf {ECom}$ is local, for any group pseudovariety $mathsf H$.
Let $m$ be a positive integer and let $Omega$ be a finite set. The $m$-closure of $Gle$Sym$(Omega)$ is the largest permutation group on $Omega$ having the same orbits as $G$ in its induced action on the Cartesian product $Omega^m$. The exact formula for the $m$-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this $m$-closure to be included in the wreath product of the $m$-closures of the factors.
We give a conjectural classification of virtually cocompactly cubulated Artin-Tits groups (i.e. having a finite index subgroup acting geometrically on a CAT(0) cube complex), which we prove for all Artin-Tits groups of spherical type, FC type or two-dimensional type. A particular case is that for $n geq 4$, the $n$-strand braid group is not virtually cocompactly cubulated.
We show that certain right-angled Coxeter groups have finite index subgroups that quotient to $mathbb Z$ with finitely generated kernels. The proof uses Bestvina-Brady Morse theory facilitated by combinatorial arguments. We describe a variety of examples where the plan succeeds or fails. Among the successful examples are the right-angled reflection groups in $mathbb H^4$ with fundamental domain the $120$-cell or the $24$-cell.