We show that certain right-angled Coxeter groups have finite index subgroups that quotient to $mathbb Z$ with finitely generated kernels. The proof uses Bestvina-Brady Morse theory facilitated by combinatorial arguments. We describe a variety of examples where the plan succeeds or fails. Among the successful examples are the right-angled reflection groups in $mathbb H^4$ with fundamental domain the $120$-cell or the $24$-cell.
We consider the question of determining whether a given group (especially one generated by involutions) is a right-angled Coxeter group. We describe a group invariant, the involution graph, and we characterize the involution graphs of right-angled Coxeter groups. We use this characterization to describe a process for constructing candidate right-angled Coxeter presentations for a given group or proving that one cannot exist. We provide some first applications. In addition, we provide an elementary proof of rigidity of the defining graph for a right-angled Coxeter group. We also recover a result stating that if the defining graph contains no SILs, then Aut^0(W) is a right-angled Coxeter group.
We show that any split extension of a right-angled Coxeter group $W_{Gamma}$ by a generating automorphism of finite order acts faithfully and geometrically on a $mathrm{CAT}(0)$ metric space.
We give explicit necessary and sufficient conditions for the abstract commensurability of certain families of 1-ended, hyperbolic groups, namely right-angled Coxeter groups defined by generalized theta-graphs and cycles of generalized theta-graphs, and geometric amalgams of free groups whose JSJ graphs are trees of diameter at most 4. We also show that if a geometric amalgam of free groups has JSJ graph a tree, then it is commensurable to a right-angled Coxeter group, and give an example of a geometric amalgam of free groups which is not quasi-isometric (hence not commensurable) to any group which is finitely generated by torsion elements. Our proofs involve a new geometric realization of the right-angled Coxeter groups we consider, such that covers corresponding to torsion-free, finite-index subgroups are surface amalgams.
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
We prove that for any infinite right-angled Coxeter or Artin group, its spherical and geodesic growth rates (with respect to the standard generating set) either take values in the set of Perron numbers, or equal $1$. Also, we compute the average number of geodesics representing an element of given word length in such groups.