No Arabic abstract
The exploration of interstellar space will require autonomous navigation systems that do not rely on tracking from the Earth. Here I develop a method to determine the 3D position and 3D velocity of a spacecraft in deep space using a star catalogue. As a spacecraft moves away from the Sun, the observed positions and velocities of the stars will change relative to those in a Earth-based catalogue due to parallax and aberration. By measuring just the angular distances between pairs of stars, and comparing these to the catalogue, we can infer the coordinates of the spacecraft via an iterative forward-modelling process. I perform simulations with existing star catalogues to demonstrate the method and to compute its performance. Using the 20 nearest stars and a modest angular distance measurement accuracy of 1, the position and velocity of a spacecraft light years from the Sun moving at relativistic speeds can be determined to within 3 au and 2 km/s respectively. These accuracies improve linearly with the measurement accuracy, e.g. with angles measured to 1 mas the navigation accuracy is 1000 times better. Performance can also be improved using more stars, or by including onboard measurements of the stars radial velocities, as these too are affected by the spacecrafts position and motion.
The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable interstellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. We identify aerographite, a synthetic carbon-based foam with a density of 0.18 kg/m^3 (15,000 times more lightweight than aluminum) as a versatile material for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness eps_shl = 1 mm could go interstellar upon submission to the solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with eps_shl = 0.5 mm arrives at the orbit of Mars in 60 d and at Plutos orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 micrometer thick, at 0.04 AU (the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km/s and 185 yr of travel to the distance of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to 2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere with eps_shl = 100 micrometer and a radius of 1 m (5 m) weighs 230 mg (5.7 g) and has a 2.2 g (55 g) mass margin for interstellar escape. The payload margin is ten times the mass of the spacecraft, whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and would serve as a precursor mission to alpha Centauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD per sail, and a total of <10 million USD including launch for a piggyback concept with an interplanetary mission.
We discuss the prospects of high precision pointing of our transmitter to habitable planets around Galactic main sequence stars. For an efficient signal delivery, the future sky positions of the host stars should be appropriately extrapolated with accuracy better than the beam opening angle $Theta$ of the transmitter. Using the latest data release (DR2) of Gaia, we estimate the accuracy of the extrapolations individually for $4.7times 10^7$ FGK stars, and find that the total number of targets could be $sim 10^7$ for the accuracy goal better than 1. Considering the pairwise nature of communication, our study would be instructive also for SETI (Search for Extraterrestrial Intelligence), not only for sending signals outward.
We present VIRAC version 1, a near-infrared proper motion and parallax catalogue of the VISTA VVV survey for 312,587,642 unique sources averaged across all overlapping pawprint and tile images covering 560 deg$^2$ of the bulge of the Milky Way and southern disk. The catalogue includes 119 million high quality proper motion measurements, of which 47 million have statistical uncertainties below 1 mas yr$^{-1}$. In the 11$<K_s<$14 magnitude range the high quality motions have a median uncertainty of 0.67 mas yr$^{-1}$. The catalogue also includes 6,935 sources with quality-controlled 5 $sigma$ parallaxes with a median uncertainty of 1.1 mas. The parallaxes show reasonable agreement with the TYCHO-Gaia Astrometric Solution (TGAS), though caution is advised for data with modest significance. The SQL database housing the data is made available via the web. We give example applications for studies of Galactic structure, nearby objects (low mass stars and brown dwarfs, subdwarfs, white dwarfs) and kinematic distance measurements of YSOs. Nearby objects discovered include LTT 7251 B, an L7 benchmark companion to a G dwarf with over 20 published elemental abundances, a bright L sub-dwarf, VVV 1256-6202, with extremely blue colours and nine new members of the 25 pc sample. We also demonstrate why this catalogue remains useful in the era of Gaia. Futur
We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.
We employ differential astrometric methods to establish a small field reference frame stable at the micro-arcsecond ($mu$as) level on short timescales using high-cadence simulated observations taken by Gaia in February 2017 of a bright star close to the limb of Jupiter, as part of the relativistic experiment on Jupiters quadrupole. We achieve sub$mu$as-level precision along scan through a suitable transformation of the field angles into a small-field tangent plane and a least-squares fit over several overlapping frames for estimating the plate and geometric calibration parameters with tens of reference stars that lie within $sim$0.5 degs from the target star, assuming perfect knowledge of stellar proper motions and parallaxes. Furthermore, we study the effects of unmodeled astrometric parameters on the residuals and find that proper motions have a stronger effect than unmodeled parallaxes. For e.g., unmodeled Gaia DR2 proper motions introduce extra residuals of $sim$23$mu$as (AL) and 69$mu$as (AC) versus the $sim$5$mu$as (AL) and 17$mu$as (AC) due to unmodeled parallaxes. On the other hand, assuming catalog errors in the proper motions such as those from Gaia DR2 has a minimal impact on the stability introducing sub$mu$as and $mu$as level residuals in the along and across scanning direction, respectively. Finally, the effect of a coarse knowledge in the satellite velocity components (with time dependent errors of 10$mu$as) is capable of enlarging the size of the residuals to roughly 0.2 mas.