No Arabic abstract
Given an incomplete image without additional constraint, image inpainting natively allows for multiple solutions as long as they appear plausible. Recently, multiplesolution inpainting methods have been proposed and shown the potential of generating diverse results. However, these methods have difficulty in ensuring the quality of each solution, e.g. they produce distorted structure and/or blurry texture. We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture. The proposed model is inspired by the hierarchical vector quantized variational auto-encoder (VQ-VAE), whose hierarchical architecture isentangles structural and textural information. In addition, the vector quantization in VQVAE enables autoregressive modeling of the discrete distribution over the structural information. Sampling from the distribution can easily generate diverse and high-quality structures, making up the first stage of our model. In the second stage, we propose a structural attention module inside the texture generation network, where the module utilizes the structural information to capture distant correlations. We further reuse the VQ-VAE to calculate two feature losses, which help improve structure coherence and texture realism, respectively. Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images. Code and models are available at: https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.
We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GANs known shortcomings such as mode collapse and lack of diversity.
We consider the task of generating diverse and novel videos from a single video sample. Recently, new hierarchical patch-GAN based approaches were proposed for generating diverse images, given only a single sample at training time. Moving to videos, these approaches fail to generate diverse samples, and often collapse into generating samples similar to the training video. We introduce a novel patch-based variational autoencoder (VAE) which allows for a much greater diversity in generation. Using this tool, a new hierarchical video generation scheme is constructed: at coarse scales, our patch-VAE is employed, ensuring samples are of high diversity. Subsequently, at finer scales, a patch-GAN renders the fine details, resulting in high quality videos. Our experiments show that the proposed method produces diverse samples in both the image domain, and the more challenging video domain.
Recent deep generative models have achieved promising performance in image inpainting. However, it is still very challenging for a neural network to generate realistic image details and textures, due to its inherent spectral bias. By our understanding of how artists work, we suggest to adopt a `structure first detail next workflow for image inpainting. To this end, we propose to build a Pyramid Generator by stacking several sub-generators, where lower-layer sub-generators focus on restoring image structures while the higher-layer sub-generators emphasize image details. Given an input image, it will be gradually restored by going through the entire pyramid in a bottom-up fashion. Particularly, our approach has a learning scheme of progressively increasing hole size, which allows it to restore large-hole images. In addition, our method could fully exploit the benefits of learning with high-resolution images, and hence is suitable for high-resolution image inpainting. Extensive experimental results on benchmark datasets have validated the effectiveness of our approach compared with state-of-the-art methods.
Image inpainting techniques have shown significant improvements by using deep neural networks recently. However, most of them may either fail to reconstruct reasonable structures or restore fine-grained textures. In order to solve this problem, in this paper, we propose a two-stage model which splits the inpainting task into two parts: structure reconstruction and texture generation. In the first stage, edge-preserved smooth images are employed to train a structure reconstructor which completes the missing structures of the inputs. In the second stage, based on the reconstructed structures, a texture generator using appearance flow is designed to yield image details. Experiments on multiple publicly available datasets show the superior performance of the proposed network.
The degree of difficulty in image inpainting depends on the types and sizes of the missing parts. Existing image inpainting approaches usually encounter difficulties in completing the missing parts in the wild with pleasing visual and contextual results as they are trained for either dealing with one specific type of missing patterns (mask) or unilaterally assuming the shapes and/or sizes of the masked areas. We propose a deep generative inpainting network, named DeepGIN, to handle various types of masked images. We design a Spatial Pyramid Dilation (SPD) ResNet block to enable the use of distant features for reconstruction. We also employ Multi-Scale Self-Attention (MSSA) mechanism and Back Projection (BP) technique to enhance our inpainting results. Our DeepGIN outperforms the state-of-the-art approaches generally, including two publicly available datasets (FFHQ and Oxford Buildings), both quantitatively and qualitatively. We also demonstrate that our model is capable of completing masked images in the wild.