Do you want to publish a course? Click here

Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring

96   0   0.0 ( 0 )
 Added by Jiangxin Dong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a simple and effective approach for non-blind image deblurring, combining classical techniques and deep learning. In contrast to existing methods that deblur the image directly in the standard image space, we propose to perform an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features. A multi-scale feature refinement module then predicts the deblurred image from the deconvolved deep features, progressively recovering detail and small-scale structures. The proposed model is trained in an end-to-end manner and evaluated on scenarios with both simulated and real-world image blur. Our extensive experimental results show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts. Moreover, our approach quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.



rate research

Read More

Microscopy is a powerful visualization tool in biology, enabling the study of cells, tissues, and the fundamental biological processes; yet, the observed images typically suffer from blur and background noise. In this work, we propose a unifying framework of algorithms for Gaussian image deblurring and denoising. These algorithms are based on deep learning techniques for the design of learnable regularizers integrated into the Wiener-Kolmogorov filter. Our extensive experimentation line showcases that the proposed approach achieves a superior quality of image reconstruction and surpasses the solutions that rely either on deep learning or on optimization schemes alone. Augmented with the variance stabilizing transformation, the proposed reconstruction pipeline can also be successfully applied to the problem of Poisson image deblurring, surpassing the state-of-the-art methods. Moreover, several variants of the proposed framework demonstrate competitive performance at low computational complexity, which is of high importance for real-time imaging applications.
Image deblurring is a fundamental and challenging low-level vision problem. Previous vision research indicates that edge structure in natural scenes is one of the most important factors to estimate the abilities of human visual perception. In this paper, we resort to human visual demands of sharp edges and propose a two-phase edge-aware deep network to improve deep image deblurring. An edge detection convolutional subnet is designed in the first phase and a residual fully convolutional deblur subnet is then used for generating deblur results. The introduction of the edge-aware network enables our model with the specific capacity of enhancing images with sharp edges. We successfully apply our framework on standard benchmarks and promising results are achieved by our proposed deblur model.
Blind deblurring consists a long studied task, however the outcomes of generic methods are not effective in real world blurred images. Domain-specific methods for deblurring targeted object categories, e.g. text or faces, frequently outperform their generic counterparts, hence they are attracting an increasing amount of attention. In this work, we develop such a domain-specific method to tackle deblurring of human faces, henceforth referred to as face deblurring. Studying faces is of tremendous significance in computer vision, however face deblurring has yet to demonstrate some convincing results. This can be partly attributed to the combination of i) poor texture and ii) highly structure shape that yield the contour/gradient priors (that are typically used) sub-optimal. In our work instead of making assumptions over the prior, we adopt a learning approach by inserting weak supervision that exploits the well-documented structure of the face. Namely, we utilise a deep network to perform the deblurring and employ a face alignment technique to pre-process each face. We additionally surpass the requirement of the deep network for thousands training samples, by introducing an efficient framework that allows the generation of a large dataset. We utilised this framework to create 2MF2, a dataset of over two million frames. We conducted experiments with real world blurred facial images and report that our method returns a result close to the sharp natural latent image.
In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN. We train the network with perceptual and adversarial losses to generate photo-realistic results and develop an incremental training strategy to handle random blur kernels in the wild. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm restores sharp images with more facial details and performs favorably against state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
Single-image super-resolution (SR) and multi-frame SR are two ways to super resolve low-resolution images. Single-Image SR generally handles each image independently, but ignores the temporal information implied in continuing frames. Multi-frame SR is able to model the temporal dependency via capturing motion information. However, it relies on neighbouring frames which are not always available in the real world. Meanwhile, slight camera shake easily causes heavy motion blur on long-distance-shot low-resolution images. To address these problems, a Blind Motion Deblurring Super-Reslution Networks, BMDSRNet, is proposed to learn dynamic spatio-temporal information from single static motion-blurred images. Motion-blurred images are the accumulation over time during the exposure of cameras, while the proposed BMDSRNet learns the reverse process and uses three-streams to learn Bidirectional spatio-temporal information based on well designed reconstruction loss functions to recover clean high-resolution images. Extensive experiments demonstrate that the proposed BMDSRNet outperforms recent state-of-the-art methods, and has the ability to simultaneously deal with image deblurring and SR.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا