No Arabic abstract
In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN. We train the network with perceptual and adversarial losses to generate photo-realistic results and develop an incremental training strategy to handle random blur kernels in the wild. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm restores sharp images with more facial details and performs favorably against state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
Blind deblurring consists a long studied task, however the outcomes of generic methods are not effective in real world blurred images. Domain-specific methods for deblurring targeted object categories, e.g. text or faces, frequently outperform their generic counterparts, hence they are attracting an increasing amount of attention. In this work, we develop such a domain-specific method to tackle deblurring of human faces, henceforth referred to as face deblurring. Studying faces is of tremendous significance in computer vision, however face deblurring has yet to demonstrate some convincing results. This can be partly attributed to the combination of i) poor texture and ii) highly structure shape that yield the contour/gradient priors (that are typically used) sub-optimal. In our work instead of making assumptions over the prior, we adopt a learning approach by inserting weak supervision that exploits the well-documented structure of the face. Namely, we utilise a deep network to perform the deblurring and employ a face alignment technique to pre-process each face. We additionally surpass the requirement of the deep network for thousands training samples, by introducing an efficient framework that allows the generation of a large dataset. We utilised this framework to create 2MF2, a dataset of over two million frames. We conducted experiments with real world blurred facial images and report that our method returns a result close to the sharp natural latent image.
In this paper, we propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks. As the human faces are highly structured and share unified facial components (e.g., eyes and mouths), such semantic information provides a strong prior for restoration. We incorporate face semantic labels as input priors and propose an adaptive structural loss to regularize facial local structures within an end-to-end deep convolutional neural network. Specifically, we first use a coarse deblurring network to reduce the motion blur on the input face image. We then adopt a parsing network to extract the semantic features from the coarse deblurred image. Finally, the fine deblurring network utilizes the semantic information to restore a clear face image. We train the network with perceptual and adversarial losses to generate photo-realistic results. The proposed method restores sharp images with more accurate facial features and details. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm performs favorably against the state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
Image deblurring is a fundamental and challenging low-level vision problem. Previous vision research indicates that edge structure in natural scenes is one of the most important factors to estimate the abilities of human visual perception. In this paper, we resort to human visual demands of sharp edges and propose a two-phase edge-aware deep network to improve deep image deblurring. An edge detection convolutional subnet is designed in the first phase and a residual fully convolutional deblur subnet is then used for generating deblur results. The introduction of the edge-aware network enables our model with the specific capacity of enhancing images with sharp edges. We successfully apply our framework on standard benchmarks and promising results are achieved by our proposed deblur model.
In this paper, we present a deep learning based image feature extraction method designed specifically for face images. To train the feature extraction model, we construct a large scale photo-realistic face image dataset with ground-truth correspondence between multi-view face images, which are synthesized from real photographs via an inverse rendering procedure. The deep face feature (DFF) is trained using correspondence between face images rendered from different views. Using the trained DFF model, we can extract a feature vector for each pixel of a face image, which distinguishes different facial regions and is shown to be more effective than general-purpose feature descriptors for face-related tasks such as matching and alignment. Based on the DFF, we develop a robust face alignment method, which iteratively updates landmarks, pose and 3D shape. Extensive experiments demonstrate that our method can achieve state-of-the-art results for face alignment under highly unconstrained face images.
We present a simple and effective approach for non-blind image deblurring, combining classical techniques and deep learning. In contrast to existing methods that deblur the image directly in the standard image space, we propose to perform an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features. A multi-scale feature refinement module then predicts the deblurred image from the deconvolved deep features, progressively recovering detail and small-scale structures. The proposed model is trained in an end-to-end manner and evaluated on scenarios with both simulated and real-world image blur. Our extensive experimental results show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts. Moreover, our approach quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.