Do you want to publish a course? Click here

Fast and High-Quality Blind Multi-Spectral Image Pansharpening

189   0   0.0 ( 0 )
 Added by Lantao Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Blind pansharpening addresses the problem of generating a high spatial-resolution multi-spectral (HRMS) image given a low spatial-resolution multi-spectral (LRMS) image with the guidance of its associated spatially misaligned high spatial-resolution panchromatic (PAN) image without parametric side information. In this paper, we propose a fast approach to blind pansharpening and achieve state-of-the-art image reconstruction quality. Typical blind pansharpening algorithms are often computationally intensive since the blur kernel and the target HRMS image are often computed using iterative solvers and in an alternating fashion. To achieve fast blind pansharpening, we decouple the solution of the blur kernel and of the HRMS image. First, we estimate the blur kernel by computing the kernel coefficients with minimum total generalized variation that blur a downsampled version of the PAN image to approximate a linear combination of the LRMS image channels. Then, we estimate each channel of the HRMS image using local Laplacian prior to regularize the relationship between each HRMS channel and the PAN image. Solving the HRMS image is accelerated by both parallelizing across the channels and by fast numerical algorithms for each channel. Due to the fast scheme and the powerful priors we used on the blur kernel coefficients (total generalized variation) and on the cross-channel relationship (local Laplacian prior), numerical experiments demonstrate that our algorithm outperforms state-of-the-art model-based counterparts in terms of both computational time and reconstruction quality of the HRMS images.



rate research

Read More

The explosive growth of image data facilitates the fast development of image processing and computer vision methods for emerging visual applications, meanwhile introducing novel distortions to the processed images. This poses a grand challenge to existing blind image quality assessment (BIQA) models, failing to continually adapt to such subpopulation shift. Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets. However, this type of approach is not scalable to a large number of datasets, and is cumbersome to incorporate a newly created dataset as well. In this paper, we formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets, building on what was learned from previously seen data. We first identify five desiderata in the new setting with a measure to quantify the plasticity-stability trade-off. We then propose a simple yet effective method for learning BIQA models continually. Specifically, based on a shared backbone network, we add a prediction head for a new dataset, and enforce a regularizer to allow all prediction heads to evolve with new data while being resistant to catastrophic forgetting of old data. We compute the quality score by an adaptive weighted summation of estimates from all prediction heads. Extensive experiments demonstrate the promise of the proposed continual learning method in comparison to standard training techniques for BIQA.
Specular reflection exists widely in photography and causes the recorded color deviating from its true value, so fast and high quality highlight removal from a single nature image is of great importance. In spite of the progress in the past decades in highlight removal, achieving wide applicability to the large diversity of nature scenes is quite challenging. To handle this problem, we propose an analytic solution to highlight removal based on an L2 chromaticity definition and corresponding dichromatic model. Specifically, this paper derives a normalized dichromatic model for the pixels with identical diffuse color: a unit circle equation of projection coefficients in two subspaces that are orthogonal to and parallel with the illumination, respectively. In the former illumination orthogonal subspace, which is specular-free, we can conduct robust clustering with an explicit criterion to determine the cluster number adaptively. In the latter illumination parallel subspace, a property called pure diffuse pixels distribution rule (PDDR) helps map each specular-influenced pixel to its diffuse component. In terms of efficiency, the proposed approach involves few complex calculation, and thus can remove highlight from high resolution images fast. Experiments show that this method is of superior performance in various challenging cases.
Ensemble methods are generally regarded to be better than a single model if the base learners are deemed to be accurate and diverse. Here we investigate a semi-supervised ensemble learning strategy to produce generalizable blind image quality assessment models. We train a multi-head convolutional network for quality prediction by maximizing the accuracy of the ensemble (as well as the base learners) on labeled data, and the disagreement (i.e., diversity) among them on unlabeled data, both implemented by the fidelity loss. We conduct extensive experiments to demonstrate the advantages of employing unlabeled data for BIQA, especially in model generalization and failure identification.
Existing blind image quality assessment (BIQA) methods are mostly designed in a disposable way and cannot evolve with unseen distortions adaptively, which greatly limits the deployment and application of BIQA models in real-world scenarios. To address this problem, we propose a novel Lifelong blind Image Quality Assessment (LIQA) approach, targeting to achieve the lifelong learning of BIQA. Without accessing to previous training data, our proposed LIQA can not only learn new distortions, but also mitigate the catastrophic forgetting of seen distortions. Specifically, we adopt the Split-and-Merge distillation strategy to train a single-head network that makes task-agnostic predictions. In the split stage, we first employ a distortion-specific generator to obtain the pseudo features of each seen distortion. Then, we use an auxiliary multi-head regression network to generate the predicted quality of each seen distortion. In the merge stage, we replay the pseudo features paired with pseudo labels to distill the knowledge of multiple heads, which can build the final regressed single head. Experimental results demonstrate that the proposed LIQA method can handle the continuous shifts of different distortion types and even datasets. More importantly, our LIQA model can achieve stable performance even if the task sequence is long.
Image quality assessment (IQA) is an important research topic for understanding and improving visual experience. The current state-of-the-art IQA methods are based on convolutional neural networks (CNNs). The performance of CNN-based models is often compromised by the fixed shape constraint in batch training. To accommodate this, the input images are usually resized and cropped to a fixed shape, causing image quality degradation. To address this, we design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios. With a multi-scale image representation, our proposed method can capture image quality at different granularities. Furthermore, a novel hash-based 2D spatial embedding and a scale embedding is proposed to support the positional embedding in the multi-scale representation. Experimental results verify that our method can achieve state-of-the-art performance on multiple large scale IQA datasets such as PaQ-2-PiQ, SPAQ and KonIQ-10k.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا