No Arabic abstract
Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on errors being local and relatively predictable. Mitigating crosstalk errors requires understanding, modeling, and detecting them. In this paper, we introduce a comprehensive framework for crosstalk errors and a protocol for detecting and localizing them. We give a rigorous definition of crosstalk errors that captures a wide range of disparate physical phenomena that have been called crosstalk, and a concrete model for crosstalk-free quantum processors. Errors that violate this model are crosstalk errors. Next, we give an equivalent but purely operational (model-independent) definition of crosstalk errors. Using this definition, we construct a protocol for detecting a large class of crosstalk errors in a multi-qubit processor by finding conditional dependencies between observed experimental probabilities. It is highly efficient, in the sense that the number of unique experiments required scales at most cubically, and very often quadratically, with the number of qubits. We demonstrate the protocol using simulations of 2-qubit and 6-qubit processors.
Error models for quantum computing processors describe their deviation from ideal behavior and predict the consequences in applications. But those processors experimental behavior -- the observed outcome statistics of quantum circuits -- are rarely consistent with error models, even in characterization experiments like randomized benchmarking (RB) or gate set tomography (GST), where the error model was specifically extracted from the data in question. We show how to resolve these inconsistencies, and quantify the rate of unmodeled errors, by augmenting error models with a parameterized wildcard error model. Adding wildcard error to an error model relaxes and weakens its predictions in a controlled way. The amount of wildcard error required to restore consistency with data quantifies how much unmodeled error was observed, in a way that facilitates direct comparison to standard gate error rates. Using both simulated and experimental data, we show how to use wildcard error to reconcile error models derived from RB and GST experiments with inconsistent data, to capture non-Markovianity, and to quantify all of a processors observed error.
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.
Whereas in standard quantum state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the POVM elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For $d$-dimensional systems measured by $d$-outcome detectors, we find there are at most $d^2(d^2-1)$ gauge parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case $d=2$ we find new gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.
Mid-circuit measurement and reset are crucial primitives in quantum computation, but such operations require strong interactions with selected qubits while maintaining isolation of neighboring qubits, which is a significant challenge in many systems. For trapped ion systems, measurement is performed with laser-induced fluorescence. Stray light from the detection beam and fluorescence from the measured ions can be significant sources of decoherence for unmeasured qubits. We present a technique using ion micromotion to reduce these sources of decoherence by over an order of magnitude. We benchmark the performance with a new method, based on randomized benchmarking, to estimate the magnitude of crosstalk errors on nearby qubits. Using the Honeywell System Model H0, we demonstrate measurement and reset on select qubits with low crosstalk errors on neighboring qubits.
Crosstalk is a leading source of failure in multiqubit quantum information processors. It can arise from a wide range of disparate physical phenomena, and can introduce subtle correlations in the errors experienced by a device. Several hardware characterization protocols are able to detect the presence of crosstalk, but few provide sufficient information to distinguish various crosstalk errors from one another. In this article we describe how gate set tomography, a protocol for detailed characterization of quantum operations, can be used to identify and characterize crosstalk errors in quantum information processors. We demonstrate our methods on a two-qubit trapped-ion processor and a two-qubit subsystem of a superconducting transmon processor.