Do you want to publish a course? Click here

Onset of glacier tables

72   0   0.0 ( 0 )
 Added by Marceau H\\'enot
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A glacier table consists of a rock supported by a slender column of ice and form naturally on glaciers. We investigate the onset of their formation at a smaller scale in a controlled environment. Depending on the size and thermal conductivity of a cap, it can either form of a table standing on an ice foot, or sink into the ice block. A one-dimension conduction model shows that the differential ice melting is controlled by a competition between two effects: a geometrical amplification, and a heat flux reduction due to the higher temperature of the cap as compared to the ice. Our model captures the transition between the two regimes and identifies a dimensionless number which controls the onset of glacier tables formation.



rate research

Read More

Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating spherical shell can exhibit a rather large number of behaviours often distinct from that of the single diffusive system. In order to understand how the differences in thermal and compositional molecular diffusivities determine the dynamics of thermo-compositional convection we investigate numerically the linear onset of convective instability in a double-diffusive setup. We construct an alternative equivalent formulation of the non-dimensional equations where the linearised double-diffusive problem is described by an effective Rayleigh number, $text{Ra}$, measuring the amplitude of the combined buoyancy driving, and a second parameter, $alpha$, measuring the mixing of the thermal and compositional contributions. This formulation is useful in that it allows for the analysis of several limiting cases and reveals dynamical similarities in the parameters space which are not obvious otherwise. We analyse the structure of the critical curves in this $text{Ra}-alpha$ space, explaining asymptotic behaviours in $alpha$, transitions between inertial and diffusive regimes, and transitions between large scale (fast drift) and small scale (slow drift) convection. We perform this analysis for a variety of diffusivities, rotation rates and shell aspect ratios showing where and when new modes of convection take place.
We investigate the chemical dissolution of porous media using a network model in which the system is represented as a series of interconnected pipes with the diameter of each segment increasing in proportion to the local reactant consumption. Moreover, the topology of the network is allowed to change dynamically during the simulation: as the diameters of the eroding pores become comparable with the interpore distances, the pores are joined together thus changing the interconnections within the network. With this model, we investigate different growth regimes in an evolving porous medium, identifying the mechanisms responsible for the emergence of specific patterns. We consider both the random and regular network and study the effect of the network geometry on the patterns. Finally, we consider practically important problem of finding an optimum flow rate that gives a maximum increase in permeability for a given amount of reactant.
Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in general, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number $P_m$ fluids, the upper bound of energy dissipation is that of classical turbulence (i.e. proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below $P_m^{-1}$ and follows a steeper evolution for magnetic Reynolds numbers above $P_m^{-1}$ (i.e. proportional to the shear velocity to the power four) in the case of electrically insulating walls. However, the effect of wall conductance is crucial : for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.
We provide a first-principles explanation of the renown phenomenological formula for the turbulent dissipation rate in the ocean which is known as the Finescale Parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber - frequency domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the Finescale-Parameterization formula in functional form and in magnitude. These energy transfers are composed of a `local and a `scale-separated contributions; while the former is quantified numerically, the latter is dominated by the Induced Diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all non-zero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed `no-flux solutions are reinstated to the status of `constant-downscale-flux solutions. This is consequential for an understanding of energy fluxes, sources and sinks that fits in the observational paradigm of the Finescale Parameterization, solving at once two long-standing paradoxes that had earned the name of `Oceanic Ultraviolet Catastrophe.
We present an investigation of the root-mean-square (rms) temperature $sigma_T$ and the rms velocity $sigma_w$ in the bulk of Rayleigh-Benard turbulence, using new experimental data from the current study and experimental and numerical data from previous studies. We find that, once scaled by the convective temperature $theta_*$, the value of $sigma_T$ at the cell centre is a constant, i.e. $sigma_{T,c}/theta_* approx 0.85$, over a wide range of the Rayleigh number ($10^{8}leq Raleq 10^{15}$) and the Prandtl number ($0.7leq Pr leq 23.34$), and is independent of the surface topographies of the top and bottom plates of the convection cell. A constant close to unity suggests that $theta_*$ is a proper measure of the temperature fluctuation in the core region. On the other hand, $sigma_{w,c}/w_*$, the vertical rms velocity at the cell centre scaled by the convective velocity $w_*$, shows a weak $Ra$-dependence ($sim Ra^{0.07pm0.02}$) over $10^8leq Raleq 10^{10}$ at $Prsim4.3$ and is independent of plate topography. Similar to a previous finding by He & Xia ({it Phys. Rev. Lett.,} vol. 122, 2019, 014503), we find that the rms temperature profile $sigma_T(z)/theta_*$ in the region of the mixing zone with a mean horizontal shear exhibits a power-law dependence on the distance $z$ from the plate, but now the universal profile applies to both smooth and rough surface topographies and over a wider range of $Ra$. The vertical rms velocity profile $sigma_w(z)/w_*$ obey a logarithmic dependence on $z$. The study thus demonstrates that the typical scales for the temperature and the velocity are the convective temperature $theta_*$ and the the convective velocity $w_*$, respectively. Finally, we note that $theta_*$ may be utilised to study the flow regime transitions in the ultra-high-$Ra$-number turbulent convection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا