No Arabic abstract
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing. The ability to tune the dispersive shifts of a cavity QED system provides more functionality for performing either quantum measurements or logical manipulations. Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID. Our design balances the mutual capacitive and inductive circuit components so that both qubits are highly decoupled from the cavity, offering protection from decoherence processes. We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically. The strength and detuning of this cavity QED interaction can be fully controlled through the choice of the parametric pump frequency and amplitude. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits while statically decoupled from the cavity. The dispersive frequency shifts of the cavity mode follow the expected magnitude and sign based on simple theory that is supported by a more thorough theoretical investigation. This parametric approach creates a new tunable cavity QED framework for developing quantum information systems with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.
We propose a many-qubit network with cavity QED by encoding qubits in decoherence-free subspace, based on which we can implement many-logic-qubit conditional gates by means of cavity assisted interaction with single-photon pulses. Our scheme could not only resist collective dephasing errors, but also much reduce the implementational steps compared to conventional methods doing the same job, and we can also complete communications between two arbitrary nodes. We show the details by implementing a three-logic-qubit Toffoli gate, and explore the experimental feasibility and challenge based on currently achievable cavity QED technologies.
The resonator-induced phase (RIP) gate is a multi-qubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional (3D) circuit-quantum electrodynamics architecture, demonstrating high-fidelity controlled-Z (CZ) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multi-qubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a four-qubit Greenberger-Horne-Zeilinger state.
Using resonant interaction of three Rydberg atoms with a single-mode microwave cavity, we consider a realization of three-qubit Grover search algorithm in the presence of weak cavity decay, based on a previous idea for three-qubit quantum gate [Phys. Rev. A 73, 064304 (2006)]. We simulate the searching process under the influence of the cavity decay and show that our scheme could be achieved efficiently to find the marked state with high fidelity. The required operations are very close to the reach with current cavity QED techniques.
We introduce a new multimode cavity QED architecture for superconducting circuits which can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two-qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102MHz and demonstrate suppressed interactions off-resonance of 10kHz when the qubits are ~600MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasi-adiabatic loading of single photons into the multimode cavity in 25ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
We consider the phase stability of a local oscillator (or laser) locked to a cavity QED system comprised of atoms with an ultra-narrow optical transition. The atoms are cooled to millikelvin temperatures and then released into the optical cavity. Although the atomic motion introduces Doppler broadening, the standing wave nature of the cavity causes saturated absorption features to appear, which are much narrower than the Doppler width. These features can be used to achieve an extremely high degree of phase stabilization, competitive with the current state-of-the-art. Furthermore, the inhomogeneity introduced by finite atomic velocities can cause optical bistability to disappear, resulting in no regions of dynamic instability and thus enabling a new regime accessible to experiments where optimum stabilization may be achieved.