Do you want to publish a course? Click here

Implementation of three-qubit Grover search in cavity QED

122   0   0.0 ( 0 )
 Added by Wan Li Yang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using resonant interaction of three Rydberg atoms with a single-mode microwave cavity, we consider a realization of three-qubit Grover search algorithm in the presence of weak cavity decay, based on a previous idea for three-qubit quantum gate [Phys. Rev. A 73, 064304 (2006)]. We simulate the searching process under the influence of the cavity decay and show that our scheme could be achieved efficiently to find the marked state with high fidelity. The required operations are very close to the reach with current cavity QED techniques.



rate research

Read More

We introduce a new multimode cavity QED architecture for superconducting circuits which can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two-qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102MHz and demonstrate suppressed interactions off-resonance of 10kHz when the qubits are ~600MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasi-adiabatic loading of single photons into the multimode cavity in 25ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
We propose a many-qubit network with cavity QED by encoding qubits in decoherence-free subspace, based on which we can implement many-logic-qubit conditional gates by means of cavity assisted interaction with single-photon pulses. Our scheme could not only resist collective dephasing errors, but also much reduce the implementational steps compared to conventional methods doing the same job, and we can also complete communications between two arbitrary nodes. We show the details by implementing a three-logic-qubit Toffoli gate, and explore the experimental feasibility and challenge based on currently achievable cavity QED technologies.
We propose and analyze a physical implementation of two-qubit parity measurements as required for continuous error correction, assuming a setup in which the individual qubits are strongly coupled to separate optical cavities. A single optical probe beam scatters sequentially from the two cavities and the continuous parity measurement is realized via fixed quadrature homodyne photo-detection. We present models based on quantum stochastic differential equations (QSDEs) for both an ideal continuous parity measurement and our proposed cavity quantum electrodynamics (cavity QED) implementation; a recent adiabatic elimination theorem for QSDEs is used to assert strong convergence of the latter to the former in an appropriate limit of physical parameters. Performance of the cavity QED scheme is studied via numerical simulation with experimentally realistic parameters.
72 - T. Noh , Z. Xiao , K. Cicak 2021
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing. The ability to tune the dispersive shifts of a cavity QED system provides more functionality for performing either quantum measurements or logical manipulations. Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID. Our design balances the mutual capacitive and inductive circuit components so that both qubits are highly decoupled from the cavity, offering protection from decoherence processes. We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically. The strength and detuning of this cavity QED interaction can be fully controlled through the choice of the parametric pump frequency and amplitude. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits while statically decoupled from the cavity. The dispersive frequency shifts of the cavity mode follow the expected magnitude and sign based on simple theory that is supported by a more thorough theoretical investigation. This parametric approach creates a new tunable cavity QED framework for developing quantum information systems with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.
We investigate the role of quantum coherence depletion (QCD) in Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure ($mathcal{C}_r$), we show that the success probability depends on the QCD. The same phenomenon is also found by using the $l_1$ norm of coherence measure ($mathcal{C}_{l_1}$). In the limit case, the cost performance is defined to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to the number of searcher items and the scale of database, no matter using $mathcal{C}_r$ or $mathcal{C}_{l_1}$. In generalized Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement, multipartite entanglement, pairwise discord and genuine multipartite discord, cannot be directly related to the success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichnys inequality are not violated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا