Do you want to publish a course? Click here

Liouville Operators over the Hardy Space

336   0   0.0 ( 0 )
 Added by Benjamin Russo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The role of Liouville operators in the study of dynamical systems through the use of occupation measures have been an active area of research in control theory over the past decade. This manuscript investigates Liouville operators over the Hardy space, which encode complex ordinary differential equations in an operator over a reproducing kernel Hilbert space.



rate research

Read More

169 - Caixing Gu , Shuaibing Luo 2018
In this paper we propose a different (and equivalent) norm on $S^{2} ({mathbb{D}})$ which consists of functions whose derivatives are in the Hardy space of unit disk. The reproducing kernel of $S^{2}({mathbb{D}})$ in this norm admits an explicit form, and it is a complete Nevanlinna-Pick kernel. Furthermore, there is a surprising connection of this norm with $3$ -isometries. We then study composition and multiplication operators on this space. Specifically, we obtain an upper bound for the norm of $C_{varphi}$ for a class of composition operators. We completely characterize multiplication operators which are $m$-isometries. As an application of the 3-isometry, we describe the reducing subspaces of $M_{varphi}$ on $S^{2}({mathbb{D}})$ when $varphi$ is a finite Blaschke product of order 2.
151 - Guangfu Cao , Li He , 2017
For a pointwise multiplier $varphi$ of the Hardy-Sobolev space $H^2_beta$ on the open unit ball $bn$ in $cn$, we study spectral properties of the multiplication operator $M_varphi: H^2_betato H^2_beta$. In particular, we compute the spectrum and essential spectrum of $M_varphi$ and develop the Fredholm theory for these operators.
In this paper we obtain quite general and definitive forms for Hardy-Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative approach; this former technique is also employed in this paper to improve the constants for vector-valued Bohnenblust--Hille type inequalities.
The Hardy--Littlewood inequalities on $ell _{p}$ spaces provide optimal exponents for some classes of inequalities for bilinear forms on $ell _{p}$ spaces. In this paper we investigate in detail the exponents involved in Hardy--Littlewood type inequalities and provide several optimal results that were not achieved by the previous approaches. Our first main result asserts that for $q_{1},...,q_{m}>0$ and an infinite-dimensional Banach space $Y$ attaining its cotype $cot Y$, if begin{equation*} frac{1}{p_{1}}+...+frac{1}{p_{m}}<frac{1}{cot Y}, end{equation*} then the following assertions are equivalent: (a) There is a constant $C_{p_{1},...,p_{m}}^{Y}geq 1$ such that begin{equation*} left( sum_{j_{1}=1}^{infty }left( sum_{j_{2}=1}^{infty }cdots left( sum_{j_{m}=1}^{infty }leftVert A(e_{j_{1}},...,e_{j_{m}})rightVert ^{q_{m}}right) ^{frac{q_{m-1}}{q_{m}}}cdots right) ^{frac{q_{1}}{q_{2}} }right) ^{frac{1}{q_{1}}}leq C_{p_{1},...,p_{m}}^{Y}leftVert ArightVert end{equation*} for all continuous $m-$linear operators $A:ell _{p_{1}}times cdots times ell _{p_{m}}rightarrow Y.$ (b) The exponents $q_{1},...,q_{m}$ satisfy begin{equation*} q_{1}geq lambda _{m,cot Y}^{p_{1},...,p_{m}},q_{2}geq lambda _{m-1,cot Y}^{p_{2},...,p_{m}},...,q_{m}geq lambda _{1,cot Y}^{p_{m}}, end{equation*} where, for $k=1,...,m,$ begin{equation*} lambda _{m-k+1,cot Y}^{p_{k},...,p_{m}}:=frac{cot Y}{1-left( frac{1}{ p_{k}}+...+frac{1}{p_{m}}right) cot Y}. end{equation*} As an application of the above result we generalize to the $m$-linear setting one of the classical Hardy--Littlewood inequalities for bilinear forms. Our result is sharp in a very strong sense: the constants and exponents are optimal, even if we consider mixed sums.
Let $displaystyle L = -frac{1}{w} , mathrm{div}(A , abla u) + mu$ be the generalized degenerate Schrodinger operator in $L^2_w(mathbb{R}^d)$ with $dge 3$ with suitable weight $w$ and measure $mu$. The main aim of this paper is threefold. First, we obtain an upper bound for the fundamental solution of the operator $L$. Secondly, we prove some estimates for the heat kernel of $L$ including an upper bound, the Holder continuity and a comparison estimate. Finally, we apply the results to study the maximal function characterization for the Hardy spaces associated to the critical function generated by the operator $L$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا