Do you want to publish a course? Click here

Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal

106   0   0.0 ( 0 )
 Added by Hui Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently discovered family of vanadium-based kagome metals with topological band structures offer a new opportunity to study frustrated, correlated and topological quantum states. These layered compounds are nonmagnetic and undergo charge density wave (CDW) transitions before developing superconductivity at low temperatures. Here we report the observation of unconventional superconductivity and pair density wave (PDW) in the vanadium-based kagome lattice CsV3Sb5 using scanning tunneling microscope/spectroscopy (STM/STS) and Josephson STS. The differential conductance exhibits a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K. Superconducting phase coherence is observed by Josephson effect and Cooper-pair tunneling to a superconducting tip. We find that CsV3Sb5 is a strong-coupling superconductor (2delta/kBTc about 5) and coexists with 4a0 unidirectional and 2x2 charge order. Remarkably, we discover a 4a0/3 bidirectional PDW accompanied by spatial modulations of the coherence peak and gap-depth in the tunneling conductance. We term the latter as a roton-PDW that can produce a commensurate vortex-antivortex lattice to account for the observed conductance modulations. Above Tc, we observe long-range ordered 4a0 unidirectional and 2a0 bidirectional CDW and a large V-shaped pseudogap in the density of state. Electron-phonon calculations attribute the 2x2 CDW to phonon softening induced structural reconstruction, but the phonon mediated pairing cannot describe the observed strong-coupling superconductor. Our findings show that electron correlations in the charge sector can drive the 4a0 unidirectional CDW, unconventional superconductivity, and roton-PDW with striking analogies to the phenomenology of cuprate high-Tc superconductors, and provide the groundwork for understanding their microscopic origins in the vanadium-based kagome superconductors.



rate research

Read More

94 - F. H. Yu , D. H. Ma , W. Z. Zhuo 2021
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1~0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2~2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.
111 - Li-Han Chen , Da Wang , Yi Zhou 2019
We investigate in underdoped cuprates possible coexistence of the superconducting (SC) order at zero momentum and pair density wave (PDW) at momentum ${bf Q}=(pi, pi)$ in the presence of a Neel order. By symmetry, the $d$-wave uniform singlet pairing $dS_0$ can coexist with the $d$-wave triplet PDW $dT_{bf Q}$, and the $p$-wave singlet PDW $pS_{bf Q}$ can coexist with the $p$-wave uniform triplet $pT_0$. At half filling, we find the novel $pS_{bf Q}+pT_0$ state is energetically more favorable than the $dS_0+dT_{bf Q}$ state. At finite doping, however, the $dS_0+dT_{bf Q}$ state is more favorable. In both types of states, the variational triplet parameters, $dT_{bf Q}$ and $pT_0$, are of secondary significance. Our results point to a fully symmetric $mathrm{Z_2}$ quantum spin liquid with spinon Fermi surface in proximity to the Neel order at zero doping, and to intertwined $d$-wave triplet PDW fluctuations and spin moment fluctuations along with the dominant $d$-wave singlet SC at finite doping. The results are obtained by variational quantum Monte Carlo simulations.
Exotic quantum phase transitions in metals, such as the nematic and smectic states, were discovered one after another and found to be universal now. The emergence of unconventional density-wave order in frustrated kagome metal AV$_3$Sb$_5$ and its interplay with exotic superconductivity attract increasing attention. We reveal that the smectic bond-density-wave is naturally caused by the paramagnon interference mechanism, because strong scatterings among different van-Hove singularity points are induced. In addition, the fluctuations of the bond-order induce sizable beyond-Migdal pairing glue, and therefore both singlet nodal $s$-wave pairing and triplet $p$-wave pairing states are expected to emerge. The coexistence of both states would explain exotic superconducting states. Unexpected similarities between kagome metal and some Fe-based superconductors are discussed. This study enables us to understand the exotic density wave, superconductivity and their interplay in kagome metals based on the interference mechanism.
96 - Z. X. Wang , Q. Wu , Q. W. Yin 2021
Recently, kagome lattice metal AV$_3$Sb$_5$ (A = K, Rb, Cs) family has received wide attention due to its presence of superconductivity, charge density wave (CDW) and peculiar properties from topological nontrivial electronic structure. With time-resolved pump-probe spectroscopy, we show that the excited quasiparticle relaxation dynamics can be explained by formation of energy gap below the phase transition being similar to a usual second-order CDW condensate, by contrast, the structure change is predominantly first order phase transition. Furthermore, no CDW amplitude mode is identified in the ordered phase. The results suggest that the CDW order is very different from the traditional CDW condensate. We also find that weak pump pulse can non-thermally melt the CDW order and drive the sample into its high temperature phase, revealing the fact that the difference in lattice potential between those phases is small.
We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0<x<1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient is observed with both decreasing band filling and isovalent substitution (K, Rb, Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our Density-Functional Theory + Slave-Spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hunds coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d-wave). We argue that the disappearance of the electron band in the range 0.4<x<1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole- and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا