No Arabic abstract
A variety of emergent phenomena has been enabled by interface engineering in the complex oxides heterostructures. While extensive attention has been attracted to LaMnO3 (LMO) thin films for observing the control of functionalities at its interface with substrate, the nature of the magnetic phases in the thin film is, however,controversial. Here, it is reported that the ferromagnetism in 2 and 5 unit cells thick LMO films epitaxially deposited (001)-SrTiO3 substrates ferromagnetic/ferromagnetic coupling in 8 and 10-unit-cell ones, and a striking ferromagnetic/antiferromagnetic pinning effect with apparent positive exchange bias in 15 and 20-unit-cell ones are observed. This novel phenomenon in both 15 and 20-unit-cell films indicates a coexistence of three magnetic orderings in a single LMO film.The high-resolution scanning transmission electron microscopy suggests a P21/n to Pbnm symmetry transition from interface to surface, with the spatial stratification of MnO6 octahedral morphology, corresponding to different magnetic orderings. These results should shed some new lights on manipulating the functionality of oxides by interface engineering.
Magneto optic measurements are a very powerful tool for investigating the polarization of a conduction band as a function of temperature and are used here to study the polarization of the mobile electrons in 50nm LSMO (x=0.3) strained thin films grown epitaxially on single crystalline (001) LaAlO3 (LAO) and (001) lattice matched substrate (LSAT). The magnetic circular dichroism (MCD) has been investigated in magnetic fields up to 0.5 T and over a temperature range (10 to 450 K). The MCD spectra of both the films show a peak at the band gap at around 3 eV and the peak is found to be shifted towards lower energy side with the increase of temperature. A separate polaron peak (well known in insulating samples) appears at lower energy (about 1.8 eV) with the increase of temperature in all these metallic films. The rapid decrease in conduction band polarization in the film on LAO has strong implications for the use of these manganites in room temperature spintronics.
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and antiferromagnetic interactions between Fe3+ spins arranged in two different environments, but a complete understanding of the magnetic structure of this material does not exist yet. In this study we investigate epitaxial CaFe2O4 thin films grown on TiO2 (110) substrates by means of Pulsed Laser Deposition (PLD). Structural characterization reveals the coexistence of two out-of-plane crystal orientations and the formation of three in-plane oriented domains. The magnetic properties of the films, investigated macroscopically as well as locally, including highly sensitive Mossbauer spectroscopy, reveal the presence of just one order parameter showing long-range ordering below T = 185 K and the critical nature of the transition. In addition, a non-zero in-plane magnetization is found, consistent with the presence of uncompensated spins at phase or domain boundaries, as proposed for bulk samples.
Ruddlesden-popper type Srn+1IrnO3n+1 compound is a major focus of condensed matter physics where the subtle balance between electron-electron correlation, spin-orbit interaction and crystal field effect brings a host of emergent phenomena. While it is understandable that a canted antiferromagnetic (AFM) insulating state with an easy-plane anisotropy is developed in Sr2IrO4 as the 2D limit of the series, it is intriguing that bilayer Sr3Ir2O7, with slightly higher effective dimensionality, stabilizes c-axis collinear antiferromagnetism. This also renders Sr3Ir2O7 as a unique playground to study exotic physics near a critical spin transition point. However, the epitaxial growth of the Sr3Ir2O7 is still a challenging task because of the narrow growth window. In our research, we have studied the thermodynamic process during synthesis of Sr3Ir2O7 thin films. We successfully expanded the synthesis window by mapping out the relation between the thin film sample crystal structure and gas pressure. Our work thus provides a more accessible avenue to stabilize metastable materials.
Understanding the crystal field splitting and orbital polarization in non-centrosymmetric systems such as ferroelectric materials is fundamentally important. In this study, taking BaTiO$_3$ (BTO) as a representative material we investigate titanium crystal field splitting and orbital polarization in non-centrosymmetric TiO$_6$ octahedra with resonant X-ray linear dichroism at Ti $L_{2,3}$-edge. The high-quality BaTiO$_3$ thin films were deposited on DyScO$_3$ (110) single crystal substrates in a layer-by-layer way by pulsed laser deposition. The reflection high-energy electron diffraction (RHEED) and element specific X-ray absorption spectroscopy (XAS) were performed to characterize the structural and electronic properties of the films. In sharp contrast to conventional crystal field splitting and orbital configuration ($d_{xz}$/$d_{yz}$ $<$ $d_{xy}$ $<$ $d_{3z^2-r^2}$ $<$ $d_{x^2-y^2}$ or $d_{xy}$ $<$ $d_{xz}$/$d_{yz}$ $<$ $d_{x^2-y^2}$ $<$ $d_{3z^2-r^2}$) according to Jahn-Teller effect, it is revealed that $d_{xz}$, $d_{yz}$, and $d_{xy}$ orbitals are nearly degenerate, whereas $d_{3z^2-r^2}$ and $d_{x^2-y^2}$ orbitals are split with an energy gap $sim$ 100 meV in the epitaxial BTO films. The unexpected degenerate states $d_{xz}$/$d_{yz}$/$d_{xy}$ are coupled to Ti-O displacements resulting from competition between polar and Jahn-Teller distortions in non-centrosymmetric TiO$_6$ octhedra of BTO films. Our results provide a route to manipulate orbital degree of freedom by switching electric polarization in ferroelectric materials.
The spin states of Co$^{3+}$ ions in perovskite-type LaCoO$_3$, governed by complex interplay between the electron-lattice interactions and the strong electron correlations, still remain controversial due to the lack of experimental techniques which can detect directly. In this letter, we revealed the tensile-strain dependence of spin states, $i. e.$ the ratio of the high- and low-spin states, in epitaxial thin films and a bulk crystal of LaCoO$_3$ via resonant inelastic soft x-ray scattering. The tensile-strain as small as 1.0% was found to realize different spin states from that in the bulk.