Do you want to publish a course? Click here

Selective Intervention Planning using Restless Multi-Armed Bandits to Improve Maternal and Child Health Outcomes

155   0   0.0 ( 0 )
 Added by Lovish Madaan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

India has a maternal mortality ratio of 113 and child mortality ratio of 2830 per 100,000 live births. Lack of access to preventive care information is a major contributing factor for these deaths, especially in low resource households. We partner with ARMMAN, a non-profit based in India employing a call-based information program to disseminate health-related information to pregnant women and women with recent child deliveries. We analyze call records of over 300,000 women registered in the program created by ARMMAN and try to identify women who might not engage with these call programs that are proven to result in positive health outcomes. We built machine learning based models to predict the long term engagement pattern from call logs and beneficiaries demographic information, and discuss the applicability of this method in the real world through a pilot validation. Through a randomized controlled trial, we show that using our models predictions to make interventions boosts engagement metrics by 61.37%. We then formulate the intervention planning problem as restless multi-armed bandits (RMABs), and present preliminary results using this approach.



rate research

Read More

The widespread availability of cell phones has enabled non-profits to deliver critical health information to their beneficiaries in a timely manner. This paper describes our work to assist non-profits that employ automated messaging programs to deliver timely preventive care information to beneficiaries (new and expecting mothers) during pregnancy and after delivery. Unfortunately, a key challenge in such information delivery programs is that a significant fraction of beneficiaries drop out of the program. Yet, non-profits often have limited health-worker resources (time) to place crucial service calls for live interaction with beneficiaries to prevent such engagement drops. To assist non-profits in optimizing this limited resource, we developed a Restless Multi-Armed Bandits (RMABs) system. One key technical contribution in this system is a novel clustering method of offline historical data to infer unknown RMAB parameters. Our second major contribution is evaluation of our RMAB system in collaboration with an NGO, via a real-world service quality improvement study. The study compared strategies for optimizing service calls to 23003 participants over a period of 7 weeks to reduce engagement drops. We show that the RMAB group provides statistically significant improvement over other comparison groups, reducing ~ 30% engagement drops. To the best of our knowledge, this is the first study demonstrating the utility of RMABs in real world public health settings. We are transitioning our RMAB system to the NGO for real-world use.
India accounts for 11% of maternal deaths globally where a woman dies in childbirth every fifteen minutes. Lack of access to preventive care information is a significant problem contributing to high maternal morbidity and mortality numbers, especially in low-income households. We work with ARMMAN, a non-profit based in India, to further the use of call-based information programs by early-on identifying women who might not engage on these programs that are proven to affect health parameters positively.We analyzed anonymized call-records of over 300,000 women registered in an awareness program created by ARMMAN that uses cellphone calls to regularly disseminate health related information. We built robust deep learning based models to predict short term and long term dropout risk from call logs and beneficiaries demographic information. Our model performs 13% better than competitive baselines for short-term forecasting and 7% better for long term forecasting. We also discuss the applicability of this method in the real world through a pilot validation that uses our method to perform targeted interventions.
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedback signal. Moreover, in each step, it can take a special action, called the $stop$ action, that ends the current episode. After the $stop$ action is taken, the learner collects a terminal reward, and observes the costs and terminal rewards associated with each step of the episode. The goal of the learner is to maximize its cumulative gain (i.e., the terminal reward minus costs) over all episodes by learning to choose the best sequence of actions based on the feedback. First, we define an {em oracle} benchmark, which sequentially selects the actions that maximize the expected immediate gain. Then, we propose our online learning algorithm, named {em FeedBack Adaptive Learning} (FeedBAL), and prove that its regret with respect to the benchmark is bounded with high probability and increases logarithmically in expectation. Moreover, the regret only has polynomial dependence on the number of steps, actions and states. eMAB can be used to model applications that involve humans in the loop, ranging from personalized medical screening to personalized web-based education, where sequences of actions are taken in each episode, and optimal behavior requires adapting the chosen actions based on the feedback.
We consider the stochastic bandit problem with a continuous set of arms, with the expected reward function over the arms assumed to be fixed but unknown. We provide two new Gaussian process-based algorithms for continuous bandit optimization-Improved GP-UCB (IGP-UCB) and GP-Thomson sampling (GP-TS), and derive corresponding regret bounds. Specifically, the bounds hold when the expected reward function belongs to the reproducing kernel Hilbert space (RKHS) that naturally corresponds to a Gaussian process kernel used as input by the algorithms. Along the way, we derive a new self-normalized concentration inequality for vector- valued martingales of arbitrary, possibly infinite, dimension. Finally, experimental evaluation and comparisons to existing algorithms on synthetic and real-world environments are carried out that highlight the favorable gains of the proposed strategies in many cases.
370 - Rahul Singh , Fang Liu , Yin Sun 2020
We study a variant of the classical multi-armed bandit problem (MABP) which we call as Multi-Armed Bandits with dependent arms. More specifically, multiple arms are grouped together to form a cluster, and the reward distributions of arms belonging to the same cluster are known functions of an unknown parameter that is a characteristic of the cluster. Thus, pulling an arm $i$ not only reveals information about its own reward distribution, but also about all those arms that share the same cluster with arm $i$. This correlation amongst the arms complicates the exploration-exploitation trade-off that is encountered in the MABP because the observation dependencies allow us to test simultaneously multiple hypotheses regarding the optimality of an arm. We develop learning algorithms based on the UCB principle which utilize these additional side observations appropriately while performing exploration-exploitation trade-off. We show that the regret of our algorithms grows as $O(Klog T)$, where $K$ is the number of clusters. In contrast, for an algorithm such as the vanilla UCB that is optimal for the classical MABP and does not utilize these dependencies, the regret scales as $O(Mlog T)$ where $M$ is the number of arms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا