No Arabic abstract
We present high-resolution (synthesised beam size 0.088x0.083 or 25x23 pc$^2$) Atacama Large Millimetre/submillimetre Array (ALMA) $^{12}$CO(2-1) line and 236 GHz continuum observations, as well as 5 GHz enhanced Multi-Element Radio Linked Interferometer Network (e-MERLIN) continuum observations, of NGC 0708; the brightest galaxy in the low-mass galaxy cluster Abell 262. The line observations reveal a turbulent, rotating disc of molecular gas in the core of the galaxy, and a high-velocity, blue-shifted feature ~0.4 (~113 pc) from its centre. The sub-millimetre continuum emission peaks at the nucleus, but extends towards this anomalous CO emission feature. No corresponding elongation is found on the same spatial scales at 5 GHz with e-MERLIN. We discuss potential causes for the anomalous blue-shifted emission detected in this source, and conclude that it is most likely to be a low-mass in-falling filament of material condensing from the hot intra-cluster medium via chaotic cold accretion, but it is also possible that it is a jet-driven molecular outflow. We estimate the physical properties this structure has in these two scenarios, and show that either explanation is viable. We suggest future observations with integral field spectrographs will be able to determine the true cause of this anomalous emission, and provide further evidence for interaction between quenched cooling flows and mechanical feedback on both small and large scales in this source.
We study the multi-phase feedback processes in the central ~3 kpc of the barred Sy 2 galaxy NGC 5643. We use observations of the cold molecular gas (ALMA CO(2-1)) and ionized gas (MUSE IFU). We study different regions along the outflow zone which extends out to ~2.3 kpc in the same direction (east-west) as the radio jet, as well as nuclear/circumnuclear regions in the host galaxy disk. The deprojected outflowing velocities of the cold molecular gas (median Vcentral~189 km s^-1) are generally lower than those of the outflowing ionized gas, which reach deprojected velocities of up to 750 km s^-1 close to the AGN, and their spatial profiles follow those of the ionized phase. This suggests that the outflowing molecular gas in the galaxy disk is being entrained by the AGN wind. We derive molecular and ionized outflow masses of ~5.2x10^7 Msun and 8.5x10^4 Msun and molecular and ionized outflow mass rates of ~51 Msun yr^-1 and 0.14 Msun yr^-1. Therefore, the molecular phase dominates the outflow mass and outflow mass rate, while the outflow kinetic power and momentum are similar in both phases. However, the wind momentum load for the molecular and ionized outflow phases are ~27-5 and <1, which suggests that the molecular phase is not momentum conserving while the ionized one most certainly is. The molecular gas content (~1.5x10^7 Msun) of the eastern spiral arm is approximately 50-70% of the content of the western one. We interpret this as destruction/clearing of the molecular gas produced by the AGN wind impacting in the host galaxy. The increase of the molecular phase momentum implies that part of the kinetic energy from the AGN wind is transmitted to the molecular outflow. This suggest that in Sy-like AGN such as NGC 5643, the radiative/quasar and the kinetic/radio AGN feedback modes coexist and may shape the host galaxies even at kpc-scales via both positive and (mild) negative feedback.
Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on spatially-resolved tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0.11 arcseconds (37 pc) resolution in the 12CO(2-1) line and 1.3mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and spatially-constant mass-to-light ratio to model the stellar mass distribution. We infer a SMBH mass of $2.5pm0.3times10^9,mathrm{M_odot}$ and a stellar I-band mass-to-light ratio of $4.6pm 0.2,mathrm{M_odot/L_{odot,I}}$ ($3sigma$ confidence intervals). This SMBH mass is significantly larger than that derived using ionised gas kinematics, which however appear significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.
Low mass galaxy cluster systems and groups play an essential role in upcoming cosmological studies such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC741, which provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly-bent jets, a 100kpc radio trail, intriguing narrow X-ray filaments, and gas sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas stripping from NGC742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.
As a part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotator early-type galaxy NGC 3665. We obtained Combined Array for Research in Millimeter Astronomy (CARMA) B and C array observations of the $^{12}$CO$(J=2-1)$ emission line with a combined angular resolution of $0.59$. We analysed and modelled the three-dimensional molecular gas kinematics, obtaining a best-fit SMBH mass $M_{rm BH}=5.75^{+1.49}_{-1.18} times 10^{8}$ $M_{odot}$, a mass-to-light ratio at $H$-band $(M/L)_{H}=1.45pm0.04$ $(M/L)_{odot, H}$, and other parameters describing the geometry of the molecular gas disc (statistical errors, all at $3sigma$ confidence). We estimate the systematic uncertainties on the stellar $M/L$ to be $approx0.2$ $(M/L)_{odot, H}$, and on the SMBH mass to be $approx0.4times10^{8}$ $M_{odot}$. The measured SMBH mass is consistent with that estimated from the latest correlations with galaxy properties. Following our older works, we also analysed and modelled the kinematics using only the major-axis position-velocity diagram, and conclude that the two methods are consistent.
As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-milimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2-1) emission line with a spatial resolution of 58x32pc2 (0.18x0.1). This resolution, combined with a channel width of 10 km/s, allows us to well resolve the radius of the black hole sphere of influence (measured as R_SOI = 316pc = 0.98), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically-relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward-model the ALMA data cube with the Kinematic Molecular Simulation (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure a SMBH mass of (4.2+/-0.7)x10^9 Msun, a F160W-band stellar mass-to-light ratio that varies from 2.8+/-0.6 Msun/Lsun in the centre to 2.4+/-0.3 Msun/Lsun at the outer edge of the disc and a molecular gas velocity dispersion of 8.3+/-2.1 km/s (all 3-sigma uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. This work demonstrates that low-J CO emission can resolve gas very close to the SMBH (~140,000 Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations as it can probe the same emitting material.