Do you want to publish a course? Click here

A Novel Paper Recommendation Method Empowered by Knowledge Graph: for Research Beginners

60   0   0.0 ( 0 )
 Added by Yanping Wang
 Publication date 2021
and research's language is English
 Authors Bangchao Wang




Ask ChatGPT about the research

Searching for papers from different academic databases is the most commonly used method by research beginners to obtain cross-domain technical solutions. However, it is usually inefficient and sometimes even useless because traditional search methods neither consider knowledge heterogeneity in different domains nor build the bottom layer of search, including but not limited to the characteristic description text of target solutions and solutions to be excluded. To alleviate this problem, a novel paper recommendation method is proposed herein by introducing master-slave domain knowledge graphs, which not only help users express their requirements more accurately but also helps the recommendation system better express knowledge. Specifically, it is not restricted by the cold start problem and is a challenge-oriented method. To identify the rationality and usefulness of the proposed method, we selected two cross-domains and three different academic databases for verification. The experimental results demonstrate the feasibility of obtaining new technical papers in the cross-domain scenario by research beginners using the proposed method. Further, a new research paradigm for research beginners in the early stages is proposed herein.



rate research

Read More

In this paper, we describe an embedding-based entity recommendation framework for Wikipedia that organizes Wikipedia into a collection of graphs layered on top of each other, learns complementary entity representations from their topology and content, and combines them with a lightweight learning-to-rank approach to recommend related entities on Wikipedia. Through offline and online evaluations, we show that the resulting embeddings and recommendations perform well in terms of quality and user engagement. Balancing simplicity and quality, this framework provides default entity recommendations for English and other languages in the Yahoo! Knowledge Graph, which Wikipedia is a core subset of.
Knowledge Graphs (KGs) have been integrated in several models of recommendation to augment the informational value of an item by means of its related entities in the graph. Yet, existing datasets only provide explicit ratings on items and no information is provided about user opinions of other (non-recommendable) entities. To overcome this limitation, we introduce a new dataset, called the MindReader, providing explicit user ratings both for items and for KG entities. In this first version, the MindReader dataset provides more than 102 thousands explicit ratings collected from 1,174 real users on both items and entities from a KG in the movie domain. This dataset has been collected through an online interview application that we also release open source. As a demonstration of the importance of this new dataset, we present a comparative study of the effect of the inclusion of ratings on non-item KG entities in a variety of state-of-the-art recommendation models. In particular, we show that most models, whether designed specifically for graph data or not, see improvements in recommendation quality when trained on explicit non-item ratings. Moreover, for some models, we show that non-item ratings can effectively replace item ratings without loss of recommendation quality. This finding, thanks also to an observed greater familiarity of users towards common KG entities than towards long-tail items, motivates the use of KG entities for both warm and cold-start recommendations.
118 - Huimin Zhou , Qing Li , Yong Jiang 2021
In the current deep learning based recommendation system, the embedding method is generally employed to complete the conversion from the high-dimensional sparse feature vector to the low-dimensional dense feature vector. However, as the dimension of the input vector of the embedding layer is too large, the addition of the embedding layer significantly slows down the convergence speed of the entire neural network, which is not acceptable in real-world scenarios. In addition, as the interaction between users and items increases and the relationship between items becomes more complicated, the embedding method proposed for sequence data is no longer suitable for graphic data in the current real environment. Therefore, in this paper, we propose the Dual-modal Graph Embedding Method (DGEM) to solve these problems. DGEM includes two modes, static and dynamic. We first construct the item graph to extract the graph structure and use random walk of unequal probability to capture the high-order proximity between the items. Then we generate the graph embedding vector through the Skip-Gram model, and finally feed the downstream deep neural network for the recommendation task. The experimental results show that DGEM can mine the high-order proximity between items and enhance the expression ability of the recommendation model. Meanwhile it also improves the recommendation performance by utilizing the time dependent relationship between items.
171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا