Do you want to publish a course? Click here

Planckian Metal at a Doping-Induced Quantum Critical Point

107   0   0.0 ( 0 )
 Added by Philipp Dumitrescu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically study a model of interacting spin-$1/2$ electrons with random exchange coupling on a fully connected lattice. This model hosts a quantum critical point separating two distinct metallic phases as a function of doping: a Fermi liquid phase with a large Fermi surface volume and a low-doping phase with local moments ordering into a spin-glass. We show that this quantum critical point has non-Fermi liquid properties characterized by $T$-linear Planckian behavior, $omega/T$ scaling and slow spin dynamics of the Sachdev-Ye-Kitaev (SYK) type. The $omega/T$ scaling function associated with the electronic self-energy is found to have an intrinsic particle-hole asymmetry, a hallmark of a `skewed non-Fermi liquid.

rate research

Read More

Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously reported dielectric anomaly at 8~K in powder samples is not due to a chiral spin liquid state as has been suggested, but rather to a tiny amount of a ferroelectric impurity phase. Two field-induced quantum phase transitions between paraelectric and paramagnetic and ferroelectric and magnetically ordered states are clearly observed. It is shown that the electric polarization is a secondary order parameter at the lower-field (gap closure) quantum critical point but a primary one at the saturation transition. Having clearly identified the magnetic Bose-Einstein condensation (BEC) nature of the latter, we use the dielectric channel to directly measure the critical divergence of BEC susceptibility. The observed power-law behavior is in very good agreement with theoretical expectations for three-dimensional BEC. Finally, dielectric data reveal magnetic presaturation phases in this compound that may feature exotic order with unconventional broken symmetries.
Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which still remains a puzzle. In the SM region, the zero-field antiferromagnetism is suppressed. Above a critical field, it gives way to a heavy Fermi liquid with Kondo correlation. The T (temperature)-linear resistivity and the T-logarithmic followed by a power-law singularity in the specific heat coefficient at low T, salient NFL behaviours in the SM region, are un-explained. We offer a mechanism to address these open issues theoretically based on the competition between a quasi-2d fluctuating short-ranged resonant- valence-bonds (RVB) spin-liquid and the Kondo correlation near criticality. Via a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an anti- ferromagnetic Kondo-Heisenberg model, we identify the critical point, and explain remarkably well both the crossovers and the SM behaviour.
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi liquid to Fermi liquid as a function of doping, indicating the presence of a quantum critical point separating non-Fermi liquid from Fermi liquid character. Marginal Fermi liquid character is found at low temperatures at a very narrow range of doping where the single-particle density of states is also symmetric. At higher doping the character of the quasiparticle fraction is seen to cross over from Fermi Liquid to Marginal Fermi liquid as the temperature increases.
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effective mass $m^ast$, and then include random interactions which lead to fermion spectral functions with frequency scaling with $k_B T/hbar$. The resistivity, $rho$, obeys the Drude formula $rho = m^ast/(n e^2 tau_{textrm{tr}})$, where $n$ is the density of fermions, and the transport scattering rate is $1/tau_{textrm{tr}} = f , k_B T/hbar$; we find $f$ of order unity, and essentially independent of the strength and form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize $m^ast$, while resonant processes are shown to produce the Planckian behavior.
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا