Do you want to publish a course? Click here

Scanning X-ray Diffraction Microscopy for Diamond Quantum Sensing

77   0   0.0 ( 0 )
 Added by Mason C Marshall
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing and information applications -- as well as for future dark matter detectors where directional information of incoming particles is encoded in crystal strain. Here, we exploit nanofocused scanning X-ray diffraction microscopy to quantitatively measure crystal deformation from growth defects in CVD diamond with high spatial and strain resolution. Combining information from multiple Bragg angles allows stereoscopic three-dimensional reconstruction of strained volumes; the diffraction results are validated via comparison to optical measurements of the strain tensor based on spin-state-dependent spectroscopy of ensembles of nitrogen vacancy (NV) centers in the diamond. Our results open a path towards directional detection of dark matter via X-ray measurement of crystal strain, and provide a new tool for diamond growth analysis and improvement of defect-based sensing.



rate research

Read More

We present a multi-purpose mirror furnace designed for synchrotron X-ray experiments. The furnace is optimized specifically for dark-field X-ray microscopy (DFXM) of crystalline materials at the beamline ID06 of the ESRF. The furnace can reach up to ~1600{deg}C with stability better than 2{deg}C, and heating and cooling rates up to 30{deg}C/s. The contact-less design enables samples to be heated either in air or in a controlled atmosphere in a capillary tube. The temperature was calibrated via the thermal expansion of an a-iron grain. Temperature profiles in the y and z axes were measured by scanning a thermocouple through the focal spot of the furnace. In the current configuration of the beamline, the furnace can be used for DFXM, near-field X-ray topography, bright field X-ray nanotomography, high resolution reciprocal space mapping, and limited powder diffraction experiments. As a first application, we present a DFXM case study on isothermal heating of a commercially pure Al single crystal.
Cross-sectional scanning tunneling microscopy (X-STM) was employed to characterize the InAs submonolayer quantum dots (SMLQDs) grown on top of a Si-doped GaAs(001) substrate in the presence of (2X4) and c(4X4) surface reconstructions. Multiple layers were grown under different conditions to study their effects on the formation, morphology and local composition of the SMLQDs. The morphological and compositional variations in SMLQDs were observed by both filled and emptystate imaging. A detailed analysis of indium segregation in the SMLQDs layers was described by fitting local indium concentration profile with a standard segregation model. A strong influence of arsenic flux over the formation of the SMLQDs and indium incorporation was observed and reported. We investigated the well-width fluctuations of the InGaAs quantum well (QW) in which SMLQDs were formed . The monolayer fluctuations of the well width were negligible compared to the more pronounced compositional fluctuations in all the layers. Keywords: Submonolayer quantum dots, Surface reconstruction, X-STM, Indium segregation
Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which generally involve incorporating nitrogen atoms (N) and vacancies (V) into the diamond through growth and/or irradiation. While there have been detailed studies of individual methods, a direct side-by-side experimental comparison of the resulting magnetic sensitivities is still missing. Here we characterise, at room and cryogenic temperatures, $approx100$ nm thick NV layers fabricated via three different methods: 1) low-energy carbon irradiation of N-rich high-pressure high-temperature (HPHT) diamond, 2) carbon irradiation of $delta$-doped chemical vapour deposition (CVD) diamond, 3) low-energy N$^+$ or CN$^-$ implantation into N-free CVD diamond. Despite significant variability within each method, we find that the best HPHT samples yield similar magnetic sensitivities (within a factor 2 on average) to our $delta$-doped samples, of $<2$~$mu$T Hz$^{-1/2}$ for DC magnetic fields and $<100$~nT Hz$^{-1/2}$ for AC fields (for a $400$~nm~$times~400$~nm pixel), while the N$^+$ and CN$^-$ implanted samples exhibit an inferior sensitivity by a factor 2-5, at both room and low temperature. We also examine the crystal lattice strain caused by the respective methods and discuss the implications this has for widefield NV imaging. The pros and cons of each method, and potential future improvements, are discussed. This study highlights that low-energy irradiation of HPHT diamond, despite its relative simplicity and low cost, is a competitive method to create thin NV layers for widefield magnetic imaging.
Control of local lattice perturbations near optically-active defects in semiconductors is a key step to harnessing the potential of solid-state qubits for quantum information science and nanoscale sensing. We report the development of a stroboscopic scanning X-ray diffraction microscopy approach for real-space imaging of dynamic strain used in correlation with microscopic photoluminescence measurements. We demonstrate this technique in 4H-SiC, which hosts long-lifetime room temperature vacancy spin defects. Using nano-focused X-ray photon pulses synchronized to a surface acoustic wave launcher, we achieve an effective time resolution of 100 ps at a 25 nm spatial resolution to map micro-radian dynamic lattice curvatures. The acoustically induced lattice distortions near an engineered scattering structure are correlated with enhanced photoluminescence responses of optically-active SiC quantum defects driven by local piezoelectric effects. These results demonstrate a unique route for directly imaging local strain in nanomechanical structures and quantifying dynamic structure-function relationships in materials under realistic operating conditions.
Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing of ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the ionic strength and concentration of electrolyte and applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of using scanning electron microscopy to examine and map electrified liquid-solid interfaces
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا