No Arabic abstract
With the string melting version of a multiphase transport(AMPT) model, we analyze the transverse momentum dependence of HBT radius $R_{rm s}$ and the single-pion transverse angle distribution in central Au+Au collisions at $sqrt{S_{NN}}=19.6, 27, 39, 62.4, 200$ GeV. And base on a series of functions, a numerical connection between these two phenomena has been built. We can estimate the single-pion transverse angle distribution from the HBT analysis.
Using several source models, we analyze the transverse momentum dependence of HBT radii in the relativistic heavy-ion collisions. The results indicate that the single-particle space-momentum angle distribution plays an important role in the transverse momentum dependence of HBT radii. In a cylinder source, we use several formulas to describe the transverse momentum dependence of HBT radii and the single-particle space-momentum angle distribution. We also make a numerical connection between them in the transverse plane.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.
The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/$c$ (SPS) and $sqrt{s} = 130$ AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparison with the standard thermal model is given. The two sources, which can reach the chemical and thermal equilibrium separately and may have different temperatures, particle and strangeness densities, and other thermodynamic characteristics, represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.