Do you want to publish a course? Click here

Analysis of particle production in ultra-relativistic heavy ion collisions within a two-source statistical model

89   0   0.0 ( 0 )
 Added by Eugene Zabrodin
 Publication date 2001
  fields
and research's language is English
 Authors Zhong-Dao Lu




Ask ChatGPT about the research

The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/$c$ (SPS) and $sqrt{s} = 130$ AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparison with the standard thermal model is given. The two sources, which can reach the chemical and thermal equilibrium separately and may have different temperatures, particle and strangeness densities, and other thermodynamic characteristics, represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.



rate research

Read More

190 - Yu.B. Ivanov 2013
Particle production in relativistic collisions of heavy nuclei is analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 62.4 GeV. The analysis is performed within the three-fluid model employing three different equations of state (EoS): a purely hadronic EoS, an EoS with the first-order phase transition and that with a smooth crossover transition. It is found that the hadronic scenario fails to reproduce experimental yields of antibaryons (strange and nonstrange), starting already from lower SPS energies, i.e. $sqrt{s_{NN}}>$ 5 GeV. Moreover, at energies above the top SPS one, i.e. $sqrt{s_{NN}}>$ 17.4 GeV, the mid-rapidity densities predicted by the hadronic scenario considerably exceed the available RHIC data on all species. At the same time the deconfinement-transition scenarios reasonably agree (to a various extent) with all the data. The present analysis demonstrates certain advantage of the deconfinement-transition EoSs. However, all scenarios fail to reproduce the strangeness enhancement in the incident energy range near 30A GeV (i.e. a horn anomaly in the $K^+/pi^+$ ratio) and yields of $phi$-mesons at 20A--40A GeV.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
92 - Zhong-Dao Lu 2002
The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
The LHC data on azimuthal anisotropy harmonics from PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted in the framework of the HYDJET++ model. The cross-talk of elliptic $v_2$ and triangular $v_3$ flow in the model generates both even and odd harmonics of higher order. Comparison with the experimental data shows that this mechanism is able to reproduce the $p_{rm T}$ and centrality dependencies of quadrangular flow $v_4$, and also the basic trends for pentagonal $v_5$ and hexagonal $v_6$ flows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا