Do you want to publish a course? Click here

Improving Schrodinger Equation Implementations with Gray Code for Adiabatic Quantum Computers

103   0   0.0 ( 0 )
 Added by Chia Cheng Chang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We reformulate the continuous space Schrodinger equation in terms of spin Hamiltonians. For the kinetic energy operator, the critical concept facilitating the reduction in model complexity is the idea of position encoding. Binary encoding of position produces a Heisenberg-like model and yields exponential improvement in space complexity when compared to classical computing. Encoding with a binary reflected Gray code, and a Hamming distance 2 Gray code yields the additional effect of reducing the spin model down to the XZ and transverse Ising model respectively. We also identify the bijective mapping between diagonal unitaries and the Walsh series, producing the mapping of any real potential to a series of $k$-local Ising models through the fast Walsh transform. Finally, in a finite volume, we provide some numerical evidence to support the claim that the total time needed for adiabatic evolution is protected by the infrared cutoff of the system. As a result, initial state preparation from a free-field wavefunction to an interacting system is expected to exhibit polynomial time complexity with volume and constant scaling with respect to lattice discretization for all encodings. For the Hamming distance 2 Gray code, the evolution starts with the transverse Hamiltonian before introducing penalties such that the low lying spectrum reproduces the energy levels of the Laplacian. The adiabatic evolution of the penalty Hamiltonian is therefore sensitive to the ultraviolet scale. It is expected to exhibit polynomial time complexity with lattice discretization, or exponential time complexity with respect to the number of qubits given a fixed volume.



rate research

Read More

Due to the limitations of present-day quantum hardware, it is especially critical to design algorithms that make the best possible use of available resources. When simulating quantum many-body systems on a quantum computer, straightforward encodings that transform many-body Hamiltonians into qubit Hamiltonians use $N$ of the available basis states of an $N$-qubit system, whereas $2^N$ are in theory available. We explore an efficient encoding that uses the entire set of basis states, where terms in the Hamiltonian are mapped to qubit operators with a Hamiltonian that acts on the basis states in Gray code order. This encoding is applied to the commonly-studied problem of finding the ground state energy of a deuteron with a simulated variational quantum eigensolver (VQE). It is compared to a standard one-hot encoding, and various trade-offs that arise are analyzed. The energy distribution of VQE solutions has smaller variance than the one obtained by the one-hot encoding even in the presence of simulated hardware noise, despite an increase in the number of measurements. The reduced number of qubits and a shorter-depth variational ansatz enables the encoding of larger problems on current-generation machines. This encoding also demonstrates improvements for simulating time evolution of the same system, producing circuits for the evolution operators with reduced depth and roughly half the number of gates compared to a one-hot encoding.
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization framework. As a demonstration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBMQ Vigo chip. We consider two implementations based on different encodings of physical states, and propose a development that may lead to quantum advantage. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.
This paper explores two circuit approaches for quantum walks: the first consists of generalised controlled
Utilization of a quantum system whose time-development is described by the nonlinear Schrodinger equation in the transformation of qubits would make it possible to construct quantum algorithms which would be useful in a large class of problems. An example of such a system for implementing the logical NOR operation is demonstrated.
Quantum computers capable of solving classically intractable problems are under construction, and intermediate-scale devices are approaching completion. Current efforts to design large-scale devices require allocating immense resources to error correction, with the majority dedicated to the production of high-fidelity ancillary states known as magic-states. Leading techniques focus on dedicating a large, contiguous region of the processor as a single magic-state distillation factory responsible for meeting the magic-state demands of applications. In this work we design and analyze a set of optimized factory architectural layouts that divide a single factory into spatially distributed factories located throughout the processor. We find that distributed factory architectures minimize the space-time volume overhead imposed by distillation. Additionally, we find that the number of distributed components in each optimal configuration is sensitive to application characteristics and underlying physical device error rates. More specifically, we find that the rate at which T-gates are demanded by an application has a significant impact on the optimal distillation architecture. We develop an optimization procedure that discovers the optimal number of factory distillation rounds and number of output magic states per factory, as well as an overall system architecture that interacts with the factories. This yields between a 10x and 20x resource reduction compared to commonly accepted single factory designs. Performance is analyzed across representative application classes such as quantum simulation and quantum chemistry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا