Do you want to publish a course? Click here

Progressive residual learning for single image dehazing

110   0   0.0 ( 0 )
 Added by Yudong Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The recent physical model-free dehazing methods have achieved state-of-the-art performances. However, without the guidance of physical models, the performances degrade rapidly when applied to real scenarios due to the unavailable or insufficient data problems. On the other hand, the physical model-based methods have better interpretability but suffer from multi-objective optimizations of parameters, which may lead to sub-optimal dehazing results. In this paper, a progressive residual learning strategy has been proposed to combine the physical model-free dehazing process with reformulated scattering model-based dehazing operations, which enjoys the merits of dehazing methods in both categories. Specifically, the global atmosphere light and transmission maps are interactively optimized with the aid of accurate residual information and preliminary dehazed restorations from the initial physical model-free dehazing process. The proposed method performs favorably against the state-of-the-art methods on public dehazing benchmarks with better model interpretability and adaptivity for complex hazy data.



rate research

Read More

The formulation of the hazy image is mainly dominated by the reflected lights and ambient airlight. Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility. However, we note that the guidance of the depth information for transmission estimation could remedy the decreased visibility as distances increase. In turn, the good transmission estimation could facilitate the depth estimation for hazy images. In this paper, a deep end-to-end model that iteratively estimates image depths and transmission maps is proposed to perform an effective depth prediction for hazy images and improve the dehazing performance with the guidance of depth information. The image depth and transmission map are progressively refined to better restore the dehazed image. Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas. Extensive results on the benchmarks demonstrate that our proposed network performs favorably against the state-of-the-art dehazing methods in terms of depth estimation and haze removal.
This paper proposes an end-to-end Efficient Re-parameterizationResidual Attention Network(ERRA-Net) to directly restore the nonhomogeneous hazy image. The contribution of this paper mainly has the following three aspects: 1) A novel Multi-branch Attention (MA) block. The spatial attention mechanism better reconstructs high-frequency features, and the channel attention mechanism treats the features of different channels differently. Multi-branch structure dramatically improves the representation ability of the model and can be changed into a single path structure after re-parameterization to speed up the process of inference. Local Residual Connection allows the low-frequency information in the nonhomogeneous area to pass through the block without processing so that the block can focus on detailed features. 2) A lightweight network structure. We use cascaded MA blocks to extract high-frequency features step by step, and the Multi-layer attention fusion tail combines the shallow and deep features of the model to get the residual of the clean image finally. 3)We propose two novel loss functions to help reconstruct the hazy image ColorAttenuation loss and Laplace Pyramid loss. ERRA-Net has an impressive speed, processing 1200x1600 HD quality images with an average runtime of 166.11 fps. Extensive evaluations demonstrate that ERSANet performs favorably against the SOTA approaches on the real-world hazy images.
113 - Yali Peng , Yue Cao , Shigang Liu 2020
Recent years have witnessed the great success of deep convolutional neural networks (CNNs) in image denoising. Albeit deeper network and larger model capacity generally benefit performance, it remains a challenging practical issue to train a very deep image denoising network. Using multilevel wavelet-CNN (MWCNN) as an example, we empirically find that the denoising performance cannot be significantly improved by either increasing wavelet decomposition levels or increasing convolution layers within each level. To cope with this issue, this paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training (PTMWRN) scheme to improve image denoising performance. In contrast to MWCNN, our MWRN introduces several residual blocks after each level of discrete wavelet transform (DWT) and before inverse discrete wavelet transform (IDWT). For easing the training difficulty, scale-specific loss is applied to each level of MWRN by requiring the intermediate output to approximate the corresponding wavelet subbands of ground-truth clean image. To ensure the effectiveness of scale-specific loss, we also take the wavelet subbands of noisy image as the input to each scale of the encoder. Furthermore, progressive training scheme is adopted for better learning of MWRN by beigining with training the lowest level of MWRN and progressively training the upper levels to bring more fine details to denoising results. Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods in terms both quantitative metrics and visual quality.
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the reconstruction performance at the expense of considerably increasing the computational cost. This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation. In order to make an efficient use of the residual features, these are hierarchically aggregated into feature banks for posterior usage at the network output. In parallel, a lightweight hierarchical attention mechanism extracts the most relevant features from the network into attention banks for improving the final output and preventing the information loss through the successive operations inside the network. Therefore, the processing is split into two independent paths of computation that can be simultaneously carried out, resulting in a highly efficient and effective model for reconstructing fine details on high-resolution images from their low-resolution counterparts. Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
221 - Huan Liu , Chen Wang , Jun Chen 2021
Despite their remarkable expressibility, convolution neural networks (CNNs) still fall short of delivering satisfactory results on single image dehazing, especially in terms of faithful recovery of fine texture details. In this paper, we argue that the inadequacy of conventional CNN-based dehazing methods can be attributed to the fact that the domain of hazy images is too far away from that of clear images, rendering it difficult to train a CNN for learning direct domain shift through an end-to-end manner and recovering texture details simultaneously. To address this issue, we propose to add explicit constraints inside a deep CNN model to guide the restoration process. In contrast to direct learning, the proposed mechanism shifts and narrows the candidate region for the estimation output via multiple confident neighborhoods. Therefore, it is capable of consolidating the expressibility of different architectures, resulting in a more accurate indirect domain shift (IDS) from the hazy images to that of clear images. We also propose two different training schemes, including hard IDS and soft IDS, which further reveal the effectiveness of the proposed method. Our extensive experimental results indicate that the dehazing method based on this mechanism outperforms the state-of-the-arts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا