No Arabic abstract
Internet of Things (IoT) is considered as the enabling platform for a variety of promising applications, such as smart transportation and smart city, where massive devices are interconnected for data collection and processing. These IoT applications pose a high demand on storage and computing capacity, while the IoT devices are usually resource-constrained. As a potential solution, mobile edge computing (MEC) deploys cloud resources in the proximity of IoT devices so that their requests can be better served locally. In this work, we investigate computation offloading in a dynamic MEC system with multiple edge servers, where computational tasks with various requirements are dynamically generated by IoT devices and offloaded to MEC servers in a time-varying operating environment (e.g., channel condition changes over time). The objective of this work is to maximize the completed tasks before their respective deadlines and minimize energy consumption. To this end, we propose an end-to-end Deep Reinforcement Learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. The simulation results are provided to demonstrate that the proposed approach outperforms the existing methods.
Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading in computation-constrained MEC systems. We consider the computation task queue at the MEC server due to its constrained computation capability. In this case, the task queue at the MT and that at the MEC server are strongly coupled in a cascade manner, which creates complex interdependencies and brings new technical challenges. We model the computation offloading problem as an infinite horizon average cost Markov decision process (MDP), and approximate it to a virtual continuous time system (VCTS) with reflections. Different to most of the existing works, we develop the dynamic instantaneous rate estimation for deriving the closed-form approximate priority functions in different scenarios. Based on the approximate priority functions, we propose a closed-form multi-level water-filling computation offloading solution to characterize the influence of not only the local queue state information (LQSI) but also the remote queue state information (RQSI). A extension is provided from single MT single MEC server scenarios to multiple MTs multiple MEC servers scenarios and several insights are derived. Finally, the simulation results show that the proposed scheme outperforms the conventional schemes.
In remote regions (e.g., mountain and desert), cellular networks are usually sparsely deployed or unavailable. With the appearance of new applications (e.g., industrial automation and environment monitoring) in remote regions, resource-constrained terminals become unable to meet the latency requirements. Meanwhile, offloading tasks to urban terrestrial cloud (TC) via satellite link will lead to high delay. To tackle above issues, Satellite Edge Computing architecture is proposed, i.e., users can offload computing tasks to visible satellites for executing. However, existing works are usually limited to offload tasks in pure satellite networks, and make offloading decisions based on the predefined models of users. Besides, the runtime consumption of existing algorithms is rather high. In this paper, we study the task offloading problem in satellite-terrestrial edge computing networks, where tasks can be executed by satellite or urban TC. The proposed Deep Reinforcement learning-based Task Offloading (DRTO) algorithm can accelerate learning process by adjusting the number of candidate locations. In addition, offloading location and bandwidth allocation only depend on the current channel states. Simulation results show that DRTO achieves near-optimal offloading cost performance with much less runtime consumption, which is more suitable for satellite-terrestrial network with fast fading channel.
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading is studied in a multi-user MEC scenario. In contrast with current system designs relying on average metrics (e.g., the average queue length and average latency), a novel network design is proposed in which latency and reliability constraints are taken into account. This is done by imposing a probabilistic constraint on users task queue lengths and invoking results from extreme value theory to characterize the occurrence of low-probability events in terms of queue length (or queuing delay) violation. The problem is formulated as a computation and transmit power minimization subject to latency and reliability constraints, and solved using tools from Lyapunov stochastic optimization. Simulation results demonstrate the effectiveness of the proposed approach, while examining the power-delay tradeoff and required computational resources for various computation intensities.
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge computing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
Provided with mobile edge computing (MEC) services, wireless devices (WDs) no longer have to experience long latency in running their desired programs locally, but can pay to offload computation tasks to the edge server. Given its limited storage space, it is important for the edge server at the base station (BS) to determine which service programs to cache by meeting and guiding WDs offloading decisions. In this paper, we propose an MEC service pricing scheme to coordinate with the service caching decisions and control WDs task offloading behavior. We propose a two-stage dynamic game of incomplete information to model and analyze the two-stage interaction between the BS and multiple associated WDs. Specifically, in Stage I, the BS determines the MEC service caching and announces the service program prices to the WDs, with the objective to maximize its expected profit under both storage and computation resource constraints. In Stage II, given the prices of different service programs, each WD selfishly decides its offloading decision to minimize individual service delay and cost, without knowing the other WDs desired program types or local execution delays. Despite the lack of WDs information and the coupling of all the WDs offloading decisions, we derive the optimal threshold-based offloading policy that can be easily adopted by the WDs in Stage II at the Bayesian equilibrium. Then, by predicting the WDs offloading equilibrium, we jointly optimize the BS pricing and service caching in Stage I via a low-complexity algorithm. In particular, we study both the uniform and differentiated pricing schemes. For differentiated pricing, we prove that the same price should be charged to the cached programs of the same workload.