No Arabic abstract
Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading in computation-constrained MEC systems. We consider the computation task queue at the MEC server due to its constrained computation capability. In this case, the task queue at the MT and that at the MEC server are strongly coupled in a cascade manner, which creates complex interdependencies and brings new technical challenges. We model the computation offloading problem as an infinite horizon average cost Markov decision process (MDP), and approximate it to a virtual continuous time system (VCTS) with reflections. Different to most of the existing works, we develop the dynamic instantaneous rate estimation for deriving the closed-form approximate priority functions in different scenarios. Based on the approximate priority functions, we propose a closed-form multi-level water-filling computation offloading solution to characterize the influence of not only the local queue state information (LQSI) but also the remote queue state information (RQSI). A extension is provided from single MT single MEC server scenarios to multiple MTs multiple MEC servers scenarios and several insights are derived. Finally, the simulation results show that the proposed scheme outperforms the conventional schemes.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we consider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
Mobile edge computing (MEC) is considered as an efficient method to relieve the computation burden of mobile devices. In order to reduce the energy consumption and time delay of mobile devices (MDs) in MEC, multiple users multiple input and multiple output (MU-MIMO) communications is considered to be applied to the MEC system. The purpose of this paper is to minimize the weighted sum of energy consumption and time delay of MDs by jointly considering the offloading decision and MU-MIMO beamforming problems. And the resulting optimization problem is a mixed-integer non-linear programming problem, which is NP-hard. To solve the optimization problem, a semidefinite relaxation based algorithm is proposed to solve the offloading decision problem. Then, the MU-MIMO beamforming design problem is handled with a newly proposed fractional programming method. Simulation results show that the proposed algorithms can effectively reduce the energy consumption and time delay of the computation offloading.
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge computing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
Internet of Things (IoT) is considered as the enabling platform for a variety of promising applications, such as smart transportation and smart city, where massive devices are interconnected for data collection and processing. These IoT applications pose a high demand on storage and computing capacity, while the IoT devices are usually resource-constrained. As a potential solution, mobile edge computing (MEC) deploys cloud resources in the proximity of IoT devices so that their requests can be better served locally. In this work, we investigate computation offloading in a dynamic MEC system with multiple edge servers, where computational tasks with various requirements are dynamically generated by IoT devices and offloaded to MEC servers in a time-varying operating environment (e.g., channel condition changes over time). The objective of this work is to maximize the completed tasks before their respective deadlines and minimize energy consumption. To this end, we propose an end-to-end Deep Reinforcement Learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. The simulation results are provided to demonstrate that the proposed approach outperforms the existing methods.
In this letter, we study the optimal solution of the multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus-noise ratio (SINR) constraints. Adopting the distance preserving constructive interference regions (DPCIR), we first derive a simplified reformulation of the problem. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-Tucker (KKT) optimality conditions, thereby we obtain the necessary and sufficient condition under which the power minimizer SLP is equivalent to the conventional zero-forcing beamforming (ZFBF). This further leads us to a closed-form sub-optimal SLP solution (CF-SLP) for the original problem. Simulation results show that CF-SLP provides significant gains over ZFBF, while performing quite close to the optimal SLP in scenarios with rather small number of users. The results further indicate that the CF-SLP method has a reduction of order $10^3$ in computational time compared to the optimal solution.