Do you want to publish a course? Click here

Scrambling with conservation law

111   0   0.0 ( 0 )
 Added by Gong Cheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article we discuss the impact of conservation laws, specifically $U(1)$ charge conservation and energy conservation, on scrambling dynamics, especially on the approach to the late time fully scrambled state. As a model, we consider a $d+1$ dimensional ($dgeq 2$) holographic conformal field theory with Einstein gravity dual. Using the holographic dictionary, we calculate out-of-time-order-correlators (OTOCs) that involve the conserved $U(1)$ current operator or energy-momentum tensor. We show that these OTOCs approach their late time value as a power law in time, with a universal exponent $frac{d}{2}$. We also generalize the result to compute OTOCs between general operators which have overlap with the conserved charges.



rate research

Read More

The delocalization or scrambling of quantum information has emerged as a central ingredient in the understanding of thermalization in isolated quantum many-body systems. Recently, significant progress has been made analytically by modeling non-integrable systems as stochastic systems, lacking a Hamiltonian picture, while honest Hamiltonian dynamics are frequently limited to small system sizes due to computational constraints. In this paper, we address this by investigating the role of conservation laws (including energy conservation) in the thermalization process from an information-theoretic perspective. For general non-integrable models, we use the equilibrium approximation to show that the maximal amount of information is scrambled (as measured by the tripartite mutual information of the time-evolution operator) at late times even when a system conserves energy. In contrast, we explicate how when a system has additional symmetries that lead to degeneracies in the spectrum, the amount of information scrambled must decrease. This general theory is exemplified in case studies of holographic conformal field theories (CFTs) and the Sachdev-Ye-Kitaev (SYK) model. Due to the large Virasoro symmetry in 1+1D CFTs, we argue that, in a sense, these holographic theories are not maximally chaotic, which is explicitly seen by the non-saturation of the second Renyi tripartite mutual information. The roles of particle-hole and U(1) symmetries in the SYK model are milder due to the degeneracies being only two-fold, which we confirm explicitly at both large- and small-$N$. We reinterpret the operator entanglement in terms the growth of local operators, connecting our results with the information scrambling described by out-of-time-ordered correlators, identifying the mechanism for suppressed scrambling from the Heisenberg perspective.
113 - Andrej Gendiar 2020
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied by a tensor product variational formulation that we have generalized for this purpose. First, we identify the quantum phase transition for each hyperbolic lattice by calculating the magnetization. We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems located at the center with the rest of the lattice. We confirm that the entanglement entropy satisfies the area law at the phase transition for fixed coordination number, i.e., it scales linearly with the increasing size of the subsystems. On the other hand, the entanglement entropy decreases as power-law with respect to the increasing coordination number.
Pattern formation in systems with a conserved quantity is considered by studying the appropriate amplitude equations. The conservation law leads to a large-scale neutral mode that must be included in the asymptotic analysis for pattern formation near onset. Near a stationary bifurcation, the usual Ginzburg--Landau equation for the amplitude of the pattern is then coupled to an equation for the large-scale mode. These amplitude equations show that for certain parameters all roll-type solutions are unstable. This new instability differs from the Eckhaus instability in that it is amplitude-driven and is supercritical. Beyond the stability boundary, there exist stable stationary solutions in the form of strongly modulated patterns. The envelope of these modulations is calculated in terms of Jacobi elliptic functions and, away from the onset of modulation, is closely approximated by a sech profile. Numerical simulations indicate that as the modulation becomes more pronounced, the envelope broadens. A number of applications are considered, including convection with fixed-flux boundaries and convection in a magnetic field, resulting in new instabilities for these systems.
Information scrambling, characterized by the out-of-time-ordered correlator (OTOC), has attracted much attention, as it sheds new light on chaotic dynamics in quantum many-body systems. The scale invariance, which appears near the quantum critical region in condensed matter physics, is considered to be important for the fast decay of the OTOC. In this paper, we focus on the one-dimensional spin-1/2 XXZ model, which exhibits quantum criticality in a certain parameter region, and investigate the relationship between scrambling and the scale invariance. We quantify scrambling by the averaged OTOC over the Pauli operator basis, which is related to the operator space entanglement entropy (OSEE). Using the infinite time-evolving block decimation (iTEBD) method, we numerically calculate time dependence of the OSEE in the early time region in the thermodynamic limit. We show that the averaged OTOC decays faster in the gapless region than in the gapped region. In the gapless region, the averaged OTOC behaves in the same manner regardless of the anisotropy parameter. This result is consistent with the fact that the low energy excitations of the gapless region belong to the same universality class as the Tomonaga-Luttinger liquid with the central charge c = 1. Furthermore, we estimate c by fitting the numerical data of the OSEE with an analytical result of the two-dimensional conformal field theory, and confirmed that c is close to unity. Thus, our numerical results suggest that the scale invariance is crucial for the universal behavior of the OTOC.
182 - Eiki Iyoda , , Takahiro Sagawa 2017
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of integrability of Hamiltonians; TMI can be negative or positive for both integrable and non-integrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by non-integrability. Furthermore, we calculate TMI in disordered systems such as many-body localized (MBL) systems and the Sachdev-Ye-Kitaev (SYK) model. We find that scrambling occurs but is slow in a MBL phase, while disorder in the SYK model does not make scrambling slower but makes it smoother.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا