Do you want to publish a course? Click here

A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training

343   0   0.0 ( 0 )
 Added by Florian Kreyssig
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training that can operate efficiently in a distributed manner. It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods. A solution to a numerical issue in CG allows effective parameter updates to be generated with far fewer CG iterations than usually used (e.g. 5-8 instead of 200). This work also presents a novel preconditioning approach to improve the progress made by individual CG iterations for models with shared parameters. Although applicable to other training losses and model structures, NGHF is investigated in this paper for lattice-based discriminative sequence training for hybrid hidden Markov model acoustic models using a standard recurrent neural network, long short-term memory, and time delay neural network models for output probability calculation. Automatic speech recognition experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types. These experiments show that NGHF achieves larger word error rate reductions than standard stochastic gradient descent or Adam, while requiring orders of magnitude fewer parameter updates.



rate research

Read More

Self-training is one of the earliest and simplest semi-supervised methods. The key idea is to augment the original labeled dataset with unlabeled data paired with the models prediction (i.e. the pseudo-parallel data). While self-training has been extensively studied on classification problems, in complex sequence generation tasks (e.g. machine translation) it is still unclear how self-training works due to the compositionality of the target space. In this work, we first empirically show that self-training is able to decently improve the supervised baseline on neural sequence generation tasks. Through careful examination of the performance gains, we find that the perturbation on the hidden states (i.e. dropout) is critical for self-training to benefit from the pseudo-parallel data, which acts as a regularizer and forces the model to yield close predictions for similar unlabeled inputs. Such effect helps the model correct some incorrect predictions on unlabeled data. To further encourage this mechanism, we propose to inject noise to the input space, resulting in a noisy version of self-training. Empirical study on standard machine translation and text summarization benchmarks shows that noisy self-training is able to effectively utilize unlabeled data and improve the performance of the supervised baseline by a large margin.
Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the character-level and the word embedding vectors as inputs. Others have shown that linguistic features can improve the performance of neural models on tasks such as chunking and named entity recognition (NER). However, the change in performance depends on the degree of semantic relatedness between the linguistic features and the target task; in some instances, linguistic features can have a negative impact on performance. This paper presents an approach to jointly learn these linguistic features along with the target sequence labelling tasks with a new multi-task learning (MTL) framework called Gated Tasks Interaction (GTI) network for solving multiple sequence tagging tasks. The GTI network exploits the relations between the multiple tasks via neural gate modules. These gate modules control the flow of information between the different tasks. Experiments on benchmark datasets for chunking and NER show that our framework outperforms other competitive baselines trained with and without external training resources.
Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression techniques are needed that are computationally friendly, applicable to a wide variety of layers seen in Deep Neural Networks and adaptable to variations in network architectures as well as their hyper-parameters. In this paper we introduce a novel technique - the Adaptive Residual Gradient Compression (AdaComp) scheme. AdaComp is based on localized selection of gradient residues and automatically tunes the compression rate depending on local activity. We show excellent results on a wide spectrum of state of the art Deep Learning models in multiple domains (vision, speech, language), datasets (MNIST, CIFAR10, ImageNet, BN50, Shakespeare), optimizers (SGD with momentum, Adam) and network parameters (number of learners, minibatch-size etc.). Exploiting both sparsity and quantization, we demonstrate end-to-end compression rates of ~200X for fully-connected and recurrent layers, and ~40X for convolutional layers, without any noticeable degradation in model accuracies.
Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained. To overcome this limitation, numerous gradient compression techniques have been proposed and have demonstrated high compression ratios. However, most existing methods do not scale well to large scale distributed systems (due to gradient build-up) and/or fail to evaluate model fidelity (test accuracy) on large datasets. To mitigate these issues, we propose a new compression technique, Scalable Sparsified Gradient Compression (ScaleCom), that leverages similarity in the gradient distribution amongst learners to provide significantly improved scalability. Using theoretical analysis, we show that ScaleCom provides favorable convergence guarantees and is compatible with gradient all-reduce techniques. Furthermore, we experimentally demonstrate that ScaleCom has small overheads, directly reduces gradient traffic and provides high compression rates (65-400X) and excellent scalability (up to 64 learners and 8-12X larger batch sizes over standard training) across a wide range of applications (image, language, and speech) without significant accuracy loss.
79 - Gurbinder Gill 2019
Many applications today, such as NLP, network analysis, and code analysis, rely on semantically embedding objects into low-dimensional fixed-length vectors. Such embeddings naturally provide a way to perform useful downstream tasks, such as identifying relations among objects or predicting objects for a given context, etc. Unfortunately, the training necessary for accurate embeddings is usually computationally intensive and requires processing large amounts of data. Furthermore, distributing this training is challenging. Most embedding training uses stochastic gradient descent (SGD), an inherently sequential algorithm. Prior approaches to parallelizing SGD do not honor these dependencies and thus potentially suffer poor convergence. This paper presents a distributed training framework for a class of applications that use Skip-gram-like models to generate embeddings. We call this class Any2Vec and it includes Word2Vec, DeepWalk, and Node2Vec among others. We first formulate Any2Vec training algorithm as a graph application and leverage the state-of-the-art distributed graph analytics framework, D-Galois. We adapt D-Galois to support dynamic graph generation and repartitioning, and incorporate novel communication optimizations. Finally, we introduce a novel way to combine gradients during distributed training to prevent accuracy loss. We show that our framework, called GraphAny2Vec, matches on a cluster of 32 hosts the accuracy of the state-of-the-art shared-memory implementations of Word2Vec and Vertex2Vec on 1 host, and gives a geo-mean speedup of 12x and 5x respectively. Furthermore, GraphAny2Vec is on average 2x faster than the state-of-the-art distributed Word2Vec implementation, DMTK, on 32 hosts. We also show the superiority of our Gradient Combiner independent of GraphAny2Vec by incorporating it in DMTK, which raises its accuracy by > 30%.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا