No Arabic abstract
Federated learning (FL) utilizes edge computing devices to collaboratively train a shared model while each device can fully control its local data access. Generally, FL techniques focus on learning model on independent and identically distributed (iid) dataset and cannot achieve satisfiable performance on non-iid datasets (e.g. learning a multi-class classifier but each client only has a single class dataset). Some personalized approaches have been proposed to mitigate non-iid issues. However, such approaches cannot handle underlying data distribution shift, namely data distribution skew, which is quite common in real scenarios (e.g. recommendation systems learn user behaviors which change over time). In this work, we provide a solution to the challenge by leveraging smart-contract with federated learning to build optimized, personalized deep learning models. Specifically, our approach utilizes smart contract to reach consensus among distributed trainers on the optimal weights of personalized models. We conduct experiments across multiple models (CNN and MLP) and multiple datasets (MNIST and CIFAR-10). The experimental results demonstrate that our personalized learning models can achieve better accuracy and faster convergence compared to classic federated and personalized learning. Compared with the model given by baseline FedAvg algorithm, the average accuracy of our personalized learning models is improved by 2% to 20%, and the convergence rate is about 2$times$ faster. Moreover, we also illustrate that our approach is secure against recent attack on distributed learning.
The demand for real-time, affordable, and efficient smart healthcare services is increasing exponentially due to the technological revolution and burst of population. To meet the increasing demands on this critical infrastructure, there is a need for intelligent methods to cope with the existing obstacles in this area. In this regard, edge computing technology can reduce latency and energy consumption by moving processes closer to the data sources in comparison to the traditional centralized cloud and IoT-based healthcare systems. In addition, by bringing automated insights into the smart healthcare systems, artificial intelligence (AI) provides the possibility of detecting and predicting high-risk diseases in advance, decreasing medical costs for patients, and offering efficient treatments. The objective of this article is to highlight the benefits of the adoption of edge intelligent technology, along with AI in smart healthcare systems. Moreover, a novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems. Additionally, the paper discusses issues and research directions arising when integrating these different technologies together.
In the last five years, edge computing has attracted tremendous attention from industry and academia due to its promise to reduce latency, save bandwidth, improve availability, and protect data privacy to keep data secure. At the same time, we have witnessed the proliferation of AI algorithms and models which accelerate the successful deployment of intelligence mainly in cloud services. These two trends, combined together, have created a new horizon: Edge Intelligence (EI). The development of EI requires much attention from both the computer systems research community and the AI community to meet these demands. However, existing computing techniques used in the cloud are not applicable to edge computing directly due to the diversity of computing sources and the distribution of data sources. We envision that there missing a framework that can be rapidly deployed on edge and enable edge AI capabilities. To address this challenge, in this paper we first present the definition and a systematic review of EI. Then, we introduce an Open Framework for Edge Intelligence (OpenEI), which is a lightweight software platform to equip edges with intelligent processing and data sharing capability. We analyze four fundamental EI techniques which are used to build OpenEI and identify several open problems based on potential research directions. Finally, four typical application scenarios enabled by OpenEI are presented.
The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security makes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
We present a new way of embedding functional languages into the Coq proof assistant by using meta-programming. This allows us to develop the meta-theory of the language using the deep embedding and provides a convenient way for reasoning about concrete programs using the shallow embedding. We connect the deep and the shallow embeddings by a soundness theorem. As an instance of our approach, we develop an embedding of a core smart contract language into Coq and verify several important properties of a crowdfunding contract based on a previous formalisation of smart contract execution in blockchains.
Cloud computing has been a main-stream computing service for years. Recently, with the rapid development in urbanization, massive video surveillance data are produced at an unprecedented speed. A traditional solution to deal with the big data would require a large amount of computing and storage resources. With the advances in Internet of things (IoT), artificial intelligence, and communication technologies, edge computing offers a new solution to the problem by processing the data partially or wholly on the edge of a surveillance system. In this study, we investigate the feasibility of using edge computing for smart parking surveillance tasks, which is a key component of Smart City. The system processing pipeline is carefully designed with the consideration of flexibility, online surveillance, data transmission, detection accuracy, and system reliability. It enables artificial intelligence at the edge by implementing an enhanced single shot multibox detector (SSD). A few more algorithms are developed on both the edge and the server targeting optimal system efficiency and accuracy. Thorough field tests were conducted in the Angle Lake parking garage for three months. The experimental results are promising that the final detection method achieves over 95% accuracy in real-world scenarios with high efficiency and reliability. The proposed smart parking surveillance system can be a solid foundation for future applications of intelligent transportation systems.