Do you want to publish a course? Click here

Learning Policies for Multilingual Training of Neural Machine Translation Systems

249   0   0.0 ( 0 )
 Added by Gaurav Kumar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper, we propose two simple search based curricula -- orderings of the multilingual training data -- which help improve translation performance in conjunction with existing techniques such as fine-tuning. Additionally, we attempt to learn a curriculum for MNMT from scratch jointly with the training of the translation system with the aid of contextual multi-arm bandits. We show on the FLORES low-resource translation dataset that these learned curricula can provide better starting points for fine tuning and improve overall performance of the translation system.



rate research

Read More

While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple low-resource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pre-training corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languages being used. We perform extensive experiments in training massively multilingual NMT models, translating up to 102 languages to and from English within a single model. We explore different setups for training such models and analyze the trade-offs between translation quality and various modeling decisions. We report results on the publicly available TED talks multilingual corpus where we show that massively multilingual many-to-many models are effective in low resource settings, outperforming the previous state-of-the-art while supporting up to 59 languages. Our experiments on a large-scale dataset with 102 languages to and from English and up to one million examples per direction also show promising results, surpassing strong bilingual baselines and encouraging future work on massively multilingual NMT.
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the models uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
Multilingual NMT has become an attractive solution for MT deployment in production. But to match bilingual quality, it comes at the cost of larger and slower models. In this work, we consider several ways to make multilingual NMT faster at inference without degrading its quality. We experiment with several light decoder architectures in two 20-language multi-parallel settings: small-scale on TED Talks and large-scale on ParaCrawl. Our experiments demonstrate that combining a shallow decoder with vocabulary filtering leads to more than twice faster inference with no loss in translation quality. We validate our findings with BLEU and chrF (on 380 language pairs), robustness evaluation and human evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا